An Introductory Course on Mathematical Game Theory


Book Description

Game theory provides a mathematical setting for analyzing competition and cooperation in interactive situations. The theory has been famously applied in economics, but is relevant in many other sciences, such as political science, biology, and, more recently, computer science. This book presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. The book is self-contained, providing a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated through abundant examples, applications, and exercises. The style is distinctively concise, while offering motivations and interpretations of the theory to make the book accessible to a wide readership. The basic concepts and results of game theory are given a formal treatment, and the mathematical tools necessary to develop them are carefully presented. Cooperative games are explained in detail, with bargaining and TU-games being treated as part of a general framework. The authors stress the relation between game theory and operations research. The book is suitable for a graduate or an advanced undergraduate course on game theory.




Games, Theory and Applications


Book Description

This text opens with the theory of 2-person zero-sum games, 2-person non-zero sum games, and n-person games, at a level between non-mathematical introductory books and technical mathematical game theory books. Includes introductory explanations of gaming and meta games. Includes numerous exercises anbd problems with solutions and over 30 illustrations. 1986 edition.




N-Person Game Theory


Book Description

DIVSequel to Two-Person Game Theory introduces necessary mathematical notation (mainly set theory), presents basic concepts and models, and provides applications to social situations. /div




Mathematical Methods of Game and Economic Theory


Book Description

Mathematical economics and game theory approached with the fundamental mathematical toolbox of nonlinear functional analysis are the central themes of this text. Both optimization and equilibrium theories are covered in full detail. The book's central application is the fundamental economic problem of allocating scarce resources among competing agents, which leads to considerations of the interrelated applications in game theory and the theory of optimization. Mathematicians, mathematical economists, and operations research specialists will find that it provides a solid foundation in nonlinear functional analysis. This text begins by developing linear and convex analysis in the context of optimization theory. The treatment includes results on the existence and stability of solutions to optimization problems as well as an introduction to duality theory. The second part explores a number of topics in game theory and mathematical economics, including two-person games, which provide the framework to study theorems of nonlinear analysis. The text concludes with an introduction to non-linear analysis and optimal control theory, including an array of fixed point and subjectivity theorems that offer powerful tools in proving existence theorems.




Introducing Game Theory and its Applications


Book Description

The mathematical study of games is an intriguing endeavor with implications and applications that reach far beyond tic-tac-toe, chess, and poker to economics, business, and even biology and politics. Most texts on the subject, however, are written at the graduate level for those with strong mathematics, economics, or business backgrounds. In




Mathematical Programming and Game Theory for Decision Making


Book Description

This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel programming, interior point method for convex quadratic programming, cooperative games, non-cooperative games and stochastic games. Researchers, professionals and advanced graduates will find the book an essential resource for current work in mathematical programming, game theory and their applications. Sample Chapter(s). Foreword (45 KB). Chapter 1: Mathematical Programming and its Applications in Finance (177 KB). Contents: Mathematical Programming and Its Applications in Finance (L C Thomas); Anti-Stalling Pivot Rule for Linear Programs with Totally Unimodular Coefficient Matrix (S N Kabadi & A P Punnen); A New Practically Efficient Interior Point Method for Convex Quadratic Programming (K G Murty); A General Framework for the Analysis of Sets of Constraints (R Caron & T Traynor), Tolerance-Based Algorithms for the Traveling Salesman Problem (D Ghosh et al.); On the Membership Problem of the Pedigree Polytope (T S Arthanari); Exact Algorithms for a One-Defective Vertex Colouring Problem (N Achuthan et al.); Complementarity Problem Involving a Vertical Block Matrix and Its Solution Using Neural Network Model (S K Neogy et al.); Fuzzy Twin Support Vector Machines for Pattern Classification (R Khemchandani et al.); An Overview of the Minimum Sum of Absolute Errors Regression (S C Narula & J F Wellington); Hedging Against the Market with No Short Selling (S A Clark & C Srinivasan); Mathematical Programming and Electrical Network Analysis II: Computational Linear Algebra Through Network Analysis (H Narayanan); Dynamic Optimal Control Policy in Price and Quality for High Technology Product (A K Bardhan & U Chanda); Forecasting for Supply Chain and Portfolio Management (K G Murty); Variational Analysis in Bilevel Programming (S Dempe et al.); Game Engineering (R J Aumann); Games of Connectivity (P Dubey & R Garg); A Robust Feedback Nash Equilibrium in a Climate Change Policy Game (M Hennlock); De Facto Delegation and Proposer Rules (H Imai & K Yonezaki); The Bargaining Set in Effectivity Function (D Razafimahatolotra); Dynamic Oligopoly as a Mixed Large Game OCo Toy Market (A Wiszniewska-Matyszkiel); On Some Classes of Balanced Games (R B Bapat); Market Equilibrium for Combinatorial Auctions and the Matching Core of Nonnegative TU Games (S Lahiri); Continuity, Manifolds, and Arrow''s Social Choice Problem (K Saukkonen); On a Mixture Class of Stochastic Games with Ordered Field Property (S K Neogy). Readership: Researchers, professionals and advanced students in mathematical programming, game theory, management sciences and computational mathematics.




Game Theory


Book Description

This modern, still relevant text is suitable for senior undergraduate and graduate students, teachers and professionals in mathematics, operational research, economics, sociology; and psychology, defence and strategic studies, and war games. Engagingly written with agreeable humor, the book can also be understood by non-mathematicians. It shows basic ideas of extensive form, pure and mixed strategies, the minimax theorem, non-cooperative and co-operative games, and a ''first class'' account of linear programming, theory and practice. The text is self-contained with comprehensive source references. Based on a series of lectures given by the author in the theory of games at Royal Holloway College, it gives unusually comprehensive but concise treatment of co-operative games, an original account of bargaining models, with a skilfully guided tour through the Shapely and Nash solutions for bimatrix games and a carefully illustrated account of finding the best threat strategies.




The Mathematics of Games of Strategy


Book Description

This text offers an exceptionally clear presentation of the mathematical theory of games of strategy and its applications to many fields including economics, military, business, and operations research.




Game Theory and Strategy


Book Description

This book is an introduction to mathematical game theory, which might better be called the mathematical theory of conflict and cooperation. It is applicable whenever two individuals—or companies, or political parties, or nations—confront situations where the outcome for each depends on the behavior of all. What are the best strategies in such situations? If there are chances of cooperation, with whom should you cooperate, and how should you share the proceeds of cooperation? Since its creation by John von Neumann and Oskar Morgenstern in 1944, game theory has shed new light on business, politics, economics, social psychology, philosophy, and evolutionary biology. In this book, its fundamental ideas are developed with mathematics at the level of high school algebra and applied to many of these fields (see the table of contents). Ideas like “fairness” are presented via axioms that fair allocations should satisfy; thus the reader is introduced to axiomatic thinking as well as to mathematical modeling of actual situations.




Game Theory and Its Applications


Book Description

This book integrates the fundamentals, methodology, and major application fields of noncooperative and cooperative games including conflict resolution. The topics addressed in the book are discrete and continuous games including games represented by finite trees; matrix and bimatrix games as well as oligopolies; cooperative solution concepts; games under uncertainty; dynamic games and conflict resolution. The methodology is illustrated by carefully chosen examples, applications and case studies which are selected from economics, social sciences, engineering, the military and homeland security. This book is highly recommended to readers who are interested in the in-depth and up-to-date integration of the theory and ever-expanding application areas of game theory.