Mathematical Illustrations


Book Description

This practical introduction to the techniques needed to produce mathematical illustrations of high quality is suitable for anyone with a modest acquaintance with coordinate geometry. The author combines a completely self-contained step-by-step introduction to the graphics programming language PostScript with advice on what goes into good mathematical illustrations, chapters showing how good graphics can be used to explain mathematics, and a treatment of all the mathematics needed to make such illustrations. The many small simple graphics projects can also be used in courses in geometry, graphics, or general mathematics. Code for many of the illustrations is included, and can be downloaded from the book's web site: www.math.ubc.ca/~cass/graphics/manualMathematicians; scientists, engineers, and even graphic designers seeking help in creating technical illustrations need look no further.




Opt Art


Book Description

Bosch provides a lively and accessible introduction to the geometric, algebraic, and algorithmic foundations of optimization. He presents classical applications, such as the legendary Traveling Salesman Problem, and shows how to adapt them to make optimization art--opt art. art.




Illustrating Mathematics


Book Description

This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.




The Geometry of an Art


Book Description

This review of literature on perspective constructions from the Renaissance through the 18th century covers 175 authors, emphasizing Peiro della Francesca, Guidobaldo del Monte, Simon Stevin, Brook Taylor, and Johann Heinrich. It treats such topics as the various methods of constructing perspective, the development of theories underlying the constructions, and the communication between mathematicians and artisans in these developments.




Mathematics and Art


Book Description

Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work.




Mathematics and Art


Book Description

This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.




Icons of Mathematics: An Exploration of Twenty Key Images


Book Description

The authors present twenty icons of mathematics, that is, geometrical shapes such as the right triangle, the Venn diagram, and the yang and yin symbol and explore mathematical results associated with them. As with their previous books (Charming Proofs, When Less is More, Math Made Visual) proofs are visual whenever possible. The results require no more than high-school mathematics to appreciate and many of them will be new even to experienced readers. Besides theorems and proofs, the book contains many illustrations and it gives connections of the icons to the world outside of mathematics. There are also problems at the end of each chapter, with solutions provided in an appendix. The book could be used by students in courses in problem solving, mathematical reasoning, or mathematics for the liberal arts. It could also be read with pleasure by professional mathematicians, as it was by the members of the Dolciani editorial board, who unanimously recommend its publication.




Discourses & mathematical illustrations pertaining to the extinction shift principle under the electrodynamics of Galilean transformations


Book Description

The book, Discourses & Mathematical Illustrations pertaining to the Extinction Shift Principle, presents for the very first time the correct use of Galilean Transformations of Velocities in the framework of Euclidean Space Geometry which has lead to the solutions to famous problems in both gravitation and electromagnetism. These are the very problems responsible for the fame and success of both the General and Special Relativity theories. The Extinction Shift Principle, currently not found in the academic textbooks, is found to be a map to correct explanations and solutions to both Gravitation and Electromagnetism. The Extinction Shift Principle itself is the very tip-off that has lead to significant findings on the Physics pertaining to the direct interaction between the gravitational field of the sun and the rays of starlight and has revealed that gravitational light bending apparently does not take place at all in the vacuum space just above the plasma rim of the sun and of the stars. These findings are found to be remarkably consistent with the past century of astronomical observations on solar light bending, suggesting that an indirect interaction between the gravitational field of the sun and the rays of starlight takes place only within the thin plasma rim of the sun.




Math Art


Book Description

The worlds of visual art and mathematics beautifully unite in this spectacular volume by award-winning writer Stephen Ornes. He explores the growing sensation of math art, presenting such pieces as a colorful crocheted representation of non-Euclidian geometry that looks like sea coral and a 65-ton, 28-foot-tall bronze sculpture covered in a space-filling curve. We learn the artist's story for every work, plus the mathematical concepts and equations behind the art.




Math and Art


Book Description

Math and Art: An Introduction to Visual Mathematics explores the potential of mathematics to generate visually appealing objects and reveals some of the beauty of mathematics. With downloadable resources and a 16-page full-color insert, it includes numerous illustrations, computer-generated graphics, photographs, and art reproductions to demonstrate how mathematics can inspire art. Basic Math Topics and Their Visual Aspects Focusing on accessible, visually interesting, and mathematically relevant topics, the text unifies mathematics subjects through their visual and conceptual beauty. Sequentially organized according to mathematical maturity level, each chapter covers a cross section of mathematics, from fundamental Euclidean geometry, tilings, and fractals to hyperbolic geometry, platonic solids, and topology. For art students, the book stresses an understanding of the mathematical background of relatively complicated yet intriguing visual objects. For science students, it presents various elegant mathematical theories and notions. Comprehensive Material for a Math in Art Course Providing all of the material for a complete one-semester course on mathematics in art, this self-contained text shows how artistic practice with mathematics and a comprehension of mathematical concepts are needed to logically and creatively appreciate the field of mathematics.