Mathematical Methods on Optimization in Transportation Systems


Book Description

This book contains selected papers from the presentations given at the 7th EURO-Working Group Meeting on 'Iransportation, which took place at the Helsinki University of Technology (HUT), Finland, during August 2-4, 1999. Altogether 31 presentations were given and 14 full papers have been selected in this publication through a peer review process coordinated by the editors. The papers in this book cover a wide range of transportation problems from the simulation of railway traffic to optimum congestion tolling and mode choice modeling with stated preference data. In general, the variety of papers clearly demonstrates the wide areas of interest of people who are involved in the research of transportation systems and their operation. They as well demonstrate the importance and possibilities of modeling and theoretical approaches in the analysis of transportation systems and problem solving. Most of the papers are purely theoretical in nature, that is, they present a theoretical model with only a hypothetical example of applica tion. There are, however, some papers, which are closer to the practice or describe applications of and give interesting results of studies made by known methodologies. It is especially noteworthy, that half of the accepted papers deal with planning and operation of public transport.




Mathematical Methods on Optimization in Transportation Systems


Book Description

This book contains selected papers from the presentations given at the 7th EURO-Working Group Meeting on 'Iransportation, which took place at the Helsinki University of Technology (HUT), Finland, during August 2-4, 1999. Altogether 31 presentations were given and 14 full papers have been selected in this publication through a peer review process coordinated by the editors. The papers in this book cover a wide range of transportation problems from the simulation of railway traffic to optimum congestion tolling and mode choice modeling with stated preference data. In general, the variety of papers clearly demonstrates the wide areas of interest of people who are involved in the research of transportation systems and their operation. They as well demonstrate the importance and possibilities of modeling and theoretical approaches in the analysis of transportation systems and problem solving. Most of the papers are purely theoretical in nature, that is, they present a theoretical model with only a hypothetical example of applica tion. There are, however, some papers, which are closer to the practice or describe applications of and give interesting results of studies made by known methodologies. It is especially noteworthy, that half of the accepted papers deal with planning and operation of public transport.




Transportation Systems Analysis


Book Description

"This book provides a rigorous and comprehensive coverage of transportation models and planning methods and is a must-have to anyone in the transportation community, including students, teachers, and practitioners." Moshe Ben-Akiva, Massachusetts Institute of Technology.




Operations Research in Transportation Systems


Book Description

The scientific monograph of a survey kind presented to the reader's attention deals with fundamental ideas and basic schemes of optimization methods that can be effectively used for solving strategic planning and operations manage ment problems related, in particular, to transportation. This monograph is an English translation of a considerable part of the author's book with a similar title that was published in Russian in 1992. The material of the monograph embraces methods of linear and nonlinear programming; nonsmooth and nonconvex optimization; integer programming, solving problems on graphs, and solving problems with mixed variables; rout ing, scheduling, solving network flow problems, and solving the transportation problem; stochastic programming, multicriteria optimization, game theory, and optimization on fuzzy sets and under fuzzy goals; optimal control of systems described by ordinary differential equations, partial differential equations, gen eralized differential equations (differential inclusions), and functional equations with a variable that can assume only discrete values; and some other methods that are based on or adjoin to the listed ones.




Transportation Systems Engineering


Book Description

"This book provides a rigorous and comprehensive coverage of transportation models and planning methods and is a must-have to anyone in the transportation community, including students, teachers, and practitioners." Moshe Ben-Akiva, Massachusetts Institute of Technology.




Urban Transportation Networks


Book Description




Sustainable Logistics and Transportation


Book Description

Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.




Optimization Models and Methods for Equilibrium Traffic Assignment


Book Description

This book is focused on the discussion of the traffic assignment problem, the mathematical and practical meaning of variables, functions and basic principles. This work gives information about new approaches, methods and algorithms based on original methodological technique, developed by authors in their publications for the past several years, as well as corresponding prospective implementations. The book may be of interest to a wide range of readers, such as civil engineering students, traffic engineers, developers of traffic assignment algorithms etc. The obtained results here are to be used in both practice and theory. This book is devoted to the traffic assignment problem, formulated in a form of nonlinear optimization program. The most efficient solution algorithms related to the problem are based on its structural features and practical meaning rather than on standard nonlinear optimization techniques or approaches. The authors have carefully considered the meaning of the traffic assignment problem for efficient algorithms development.




Data Analytics for Intelligent Transportation Systems


Book Description

Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems that includes detailed coverage of the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. Users will learn how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. - Includes case studies in each chapter that illustrate the application of concepts covered - Presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies - Contains contributors from both leading academic and commercial researchers - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications




Multimodal Transport Systems


Book Description

The use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system. Contents 1. Dynamic Car-pooling, Slim Hammadi and Nawel Zangar. 2. Simulation of Urban Transport Systems, Christian Tahon, Thérèse Bonte and Alain Gibaud. 3. Real-time Fleet Management: Typology and Methods, Frédéric Semet and Gilles Goncalves. 4. Solving the Problem of Dynamic Routes by Particle Swarm, Mostefa Redouane Khouahjia, Laetitia Jourdan and El Ghazali Talbi. 5. Optimization of Traffic at a Railway Junction: Scheduling Approaches Based on Timed Petri Nets, Thomas Bourdeaud’huy and Benoît Trouillet. About the Authors Slim Hammadi is Full Professor at the Ecole Centrale de Lille in France, and Director of the LAGIS Team on Optimization of Logistic systems. He is an IEEE Senior Member and specializes in distributed optimization, multi-agent systems, supply chain management and metaheuristics. Mekki Ksouri is Professor and Head of the Systems Analysis, Conception and Control Laboratory at Tunis El Manar University, National Engineering School of Tunis (ENIT) in Tunisia. He is an IEEE Senior Member and specializes in control systems, nonlinear systems, adaptive control and optimization. The multimodal transport network customers need to be oriented during their travels. A multimodal information system (MIS) can provide customers with a travel support tool, allowing them to express their demands and providing them with the appropriate responses in order to improve their travel conditions. This book develops methodologies in order to realize a MIS tool capable of ensuring the availability of permanent multimodal information for customers before and while traveling, considering passengers mobility.