Mathematical Modeling And Methods Of Option Pricing


Book Description

From the unique perspective of partial differential equations (PDE), this self-contained book presents a systematic, advanced introduction to the Black-Scholes-Merton's option pricing theory.A unified approach is used to model various types of option pricing as PDE problems, to derive pricing formulas as their solutions, and to design efficient algorithms from the numerical calculation of PDEs. In particular, the qualitative and quantitative analysis of American option pricing is treated based on free boundary problems, and the implied volatility as an inverse problem is solved in the optimal control framework of parabolic equations.




Mathematical Modeling and Methods of Option Pricing


Book Description

From the perspective of partial differential equations (PDE), this book introduces the Black-Scholes-Merton's option pricing theory. A unified approach is used to model various types of option pricing as PDE problems, to derive pricing formulas as their solutions, and to design efficient algorithms from the numerical calculation of PDEs.




Option Pricing


Book Description

Análisis de los diferentes modelos matemáticos aplicados a los precios de opción. Se estudian además los elementos matemáticos básicos necesarios para el análisis de la ecuación Black-Scholes.




Mathematical Models of Financial Derivatives


Book Description

This second edition, now featuring new material, focuses on the valuation principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analysed, emphasising aspects of pricing, hedging and practical usage. This second edition features additional emphasis on the discussion of Ito calculus and Girsanovs Theorem, and the risk-neutral measure and equivalent martingale pricing approach. A new chapter on credit risk models and pricing of credit derivatives has been added. Up-to-date research results are provided by many useful exercises.




Analysis, Geometry, and Modeling in Finance


Book Description

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th




PDE and Martingale Methods in Option Pricing


Book Description

This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.




Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes


Book Description

This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.




Mathematical Modelling Techniques


Book Description

"Engaging, elegantly written." — Applied Mathematical Modelling. A distinguished theoretical chemist and engineer discusses the types of models — finite, statistical, stochastic, and more — as well as how to formulate and manipulate them for best results. Filled with numerous examples, the book includes three appendices offering further examples treated in more detail.




Introduction to the Economics and Mathematics of Financial Markets


Book Description

An innovative textbook for use in advanced undergraduate and graduate courses; accessible to students in financial mathematics, financial engineering and economics. Introduction to the Economics and Mathematics of Financial Markets fills the longstanding need for an accessible yet serious textbook treatment of financial economics. The book provides a rigorous overview of the subject, while its flexible presentation makes it suitable for use with different levels of undergraduate and graduate students. Each chapter presents mathematical models of financial problems at three different degrees of sophistication: single-period, multi-period, and continuous-time. The single-period and multi-period models require only basic calculus and an introductory probability/statistics course, while an advanced undergraduate course in probability is helpful in understanding the continuous-time models. In this way, the material is given complete coverage at different levels; the less advanced student can stop before the more sophisticated mathematics and still be able to grasp the general principles of financial economics. The book is divided into three parts. The first part provides an introduction to basic securities and financial market organization, the concept of interest rates, the main mathematical models, and quantitative ways to measure risks and rewards. The second part treats option pricing and hedging; here and throughout the book, the authors emphasize the Martingale or probabilistic approach. Finally, the third part examines equilibrium models—a subject often neglected by other texts in financial mathematics, but included here because of the qualitative insight it offers into the behavior of market participants and pricing.




The Black-Scholes Model


Book Description

Master the essential mathematical tools required for option pricing within the context of a specific, yet fundamental, pricing model.