Oceanic Methane Hydrates


Book Description

Methane hydrates are still a complicated target for today’s oil and gas offshore engineers, particularly the lack of reliable real field test data or obtaining the most recent technology available on the feasibility and challenges surrounding the extraction of methane hydrates. Oceanic Methane Hydrates delivers the solid foundation as well as today’s advances and challenges that remain. Starting with the fundamental knowledge on gas hydrates, the authors define the origin, estimations, and known exploration and production methods. Historical and current oil and gas fields and roadmaps containing methane hydrates around the world are also covered to help lay the foundation for the early career engineer. Lab experiments and advancements in numerical reservoir simulations transition the engineer from research to practice with real field-core sampling techniques covered, points on how to choose producible methane hydrate reservoirs, and the importance of emerging technologies. Actual comparable onshore tests from around the world are included to help the engineer gain clarity on field expectations.Rounding out the reference are emerging technologies in all facets of the business including well completion and monitoring, economics aspects to consider, and environmental challenges, particularly methods to reduce the costs of methane hydrate exploration and production techniques. Rounding out a look at future trends, Oceanic Methane Hydrates covers both the basics and advances needed for today’s engineers to gain the required knowledge needed to tackle this challenging and exciting future energy source. Understand real data and practice examples covering the newest developments of methane hydrate, from chemical, reservoir modelling and production testing Gain worldwide coverage and analysis of the most recent extraction production tests Cover the full range of emerging technologies and environmental sustainability including current regulations and policy outlook




New Frontiers in Oil and Gas Exploration


Book Description

This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.




Issues in Chemical Engineering and other Chemistry Specialties: 2011 Edition


Book Description

Issues in Chemical Engineering and other Chemistry Specialties: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Chemical Engineering and other Chemistry Specialties. The editors have built Issues in Chemical Engineering and other Chemistry Specialties: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Chemical Engineering and other Chemistry Specialties in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Chemical Engineering and other Chemistry Specialties: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Mathematical Modeling and Analysis of Methane Production and Oxidation


Book Description

This book presents a systematic study of methane production and oxidation processes in anoxic soils, using mathematical modelling tools and dynamical systems theory. Methane is a greenhouse gas and the second largest contributor to global warming among anthropogenic greenhouse gases. Methane emission from soil ecosystems is basically regulated by two opposing microbial processes: methane production and methane oxidation. Main topic of the book includes quantification and quantitative analyses of the soil microbial communities and associated biogeochemical processes that release soil carbon as methane gas to the atmosphere. It demonstrates and quantifies different dynamic regimes for a variety of long-term behaviors of methane emissions. It also discusses the roles of potential process-controlling factors and its spatiotemporal variability. Consequently, this study illustrates a "zero-emission" technique to force the emission towards 'zero' at long-term.




Numerical Modeling of Gas Recovery from Methane Hydrate Reservoirs


Book Description

In the production of conventional gas reservoirs using a constant bottom-hole pressure production scheme, both gas and water production rates exponentially decrease with time. However, for methane-hydrate reservoirs, gas production rate exponentially declines with time whereas water production rate increases with time because methane hydrate dissociation increases water saturation of the reservoir.




Modeling Transport Phenomena in Porous Media with Applications


Book Description

This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.




Single-well Modeling of Coalbed Methane Production


Book Description

The presented study concerns the unconventional coal bed methane (CBM) fields that imply peculiarity of their evaluation. The theoretical basis of the CBM field development is briefly described, most widely known models of changes in the properties of the coal seam are considered. The study objective was formulation of a computation framework based on material balance equation and incorporating non-equilibrium nature of gas desorption, matrix shrinkage and geomechanically dependent relative permeability curves. Further solution of a specific CBM single-well problem and parametric study for evaluation impact of separate parameters were conducted. Focus of the studies was on well production forecasting, effect of mechanical properties of coal on production efficiency, comparison of the analytical models performance based on specific mathematical models for absolute and relative permeabilities and residual saturations. Numerical simulation is not flexible and easy to understand, therefore other tools are needed in order to try out the newly proposed mathematical models of processes occurring during CBM production. For desorption controlled reservoirs, considering non-equilibrium nature of desorption has to be essential, otherwise the production can be significantly overestimated. The currently proposed models have significant drawbacks, since they have to be heavily adapted to give similar results, being based on experimental results with limited pressures. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152465




Realizing the Energy Potential of Methane Hydrate for the United States


Book Description

Natural gas, composed mostly of methane, is the cleanest of all the fossil fuels, emitting 25-50% less carbon dioxide than either oil or coal for each unit of energy produced. In recent years, natural gas supplied approximately 20-25% of all energy consumed in the United States. Methane hydrate is a potentially enormous and as yet untapped source of methane. The Department of Energy's Methane Hydrate Research and Development Program has been tasked since 2000 to implement and coordinate a national methane hydrate research effort to stimulate the development of knowledge and technology necessary for commercial production of methane from methane hydrate in a safe and environmentally responsible way. Realizing the Energy Potential of Methane Hydrate for the United States evaluates the program's research projects and management processes since its congressional re-authorization in 2005, and presents recommendations for its future research and development initiatives.




Natural Gas Hydrates


Book Description

“Natural Gas Hydrates: Experimental Techniques and Their Applications” attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc. This book will be of interest to experimental scientists who engage in gas hydrate experiments in the laboratory, and is also intended as a reference work for students concerned with gas hydrate research. Yuguang Ye is a distinguished professor of Experimental Geology at Qingdao Institute of Marine Geology, China Geological Survey, China. Professor Changling Liu works at the Qingdao Institute of Marine Geology, China Geological Survey, China.