Mathematical Modeling of Earth's Dynamical Systems


Book Description

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html







Mathematics for Dynamic Modeling


Book Description

Mathematics for Dynamic Modeling provides an introduction to the mathematics of dynamical systems. This book presents the mathematical formulations in terms of linear and nonlinear differential equations. Organized into two parts encompassing nine chapters, this book begins with an overview of the notions of equilibrium and stability in differential equation modeling that occur in the guise of simple models in the plane. This text then focuses on nonlinear models in which the limiting behavior of orbits can be more complicated. Other chapters consider the problems that illustrate the concepts of equilibrium and stability, limit cycles, chaos, and bifurcation. This book discusses as well a variety of topics, including cusp catastrophes, strange attractors, and reaction–diffusion and shock phenomena. The final chapter deals with models that are based on the notion of optimization. This book is intended to be suitable for students in upper undergraduate and first-year graduate course in mathematical modeling.




Mechanics and Dynamical Systems with Mathematica®


Book Description

Modeling and Applied Mathematics Modeling the behavior of real physical systems by suitable evolution equa tions is a relevant, maybe the fundamental, aspect of the interactions be tween mathematics and applied sciences. Modeling is, however, only the first step toward the mathematical description and simulation of systems belonging to real world. Indeed, once the evolution equation is proposed, one has to deal with mathematical problems and develop suitable simula tions to provide the description of the real system according to the model. Within this framework, one has an evolution equation and the re lated mathematical problems obtained by adding all necessary conditions for their solution. Then, a qualitative analysis should be developed: this means proof of existence of solutions and analysis of their qualitative be havior. Asymptotic analysis may include a detailed description of stability properties. Quantitative analysis, based upon the application ofsuitable methods and algorithms for the solution of problems, ends up with the simulation that is the representation of the dependent variable versus the independent one. The information obtained by the model has to be compared with those deriving from the experimental observation of the real system. This comparison may finally lead to the validation of the model followed by its application and, maybe, further generalization.




Earth Surface Systems


Book Description

Discussions of "systems" and the "systems approach" tend to fall into one of two categories: the panegyrical and the disparaging. Scholars who praise the systems approach do so in the belief that it is a powerful and precise method of study. Scholars who try to shoot it down fail to see any advantage in it; indeed, many deem it periIicious. Van Dyne (1980, p. 889) records a facetious comment he once heard, the gist of which ran: "In instances where there are from one to two variables in a study you have a science, where there are from four to seven variables you have an art, and where there are more than seven variables you have a system". This tilt at the systems approach is mild indeed compared with the com ments of an anonymous reviewer of a paper by myself concerned with the systems approach as applied to the soil. The reviewer stated bluntly that he or she had no time for an approach which falsifies and belittles work that has been done and is of no use for future work. My summary of the paper opened with the seemingly innocuous sentence "The notion of the soil as a system is placed on a . formal footing by couching it in terms of dynamical systems theory".




Mathematical Modeling


Book Description

Mathematical Modeling, Third Edition is a general introduction to an increasingly crucial topic for today's mathematicians. Unlike textbooks focused on one kind of mathematical model, this book covers the broad spectrum of modeling problems, from optimization to dynamical systems to stochastic processes. Mathematical modeling is the link between mathematics and the rest of the world. Meerschaert shows how to refine a question, phrasing it in precise mathematical terms. Then he encourages students to reverse the process, translating the mathematical solution back into a comprehensible, useful answer to the original question. This textbook mirrors the process professionals must follow in solving complex problems. Each chapter in this book is followed by a set of challenging exercises. These exercises require significant effort on the part of the student, as well as a certain amount of creativity. Meerschaert did not invent the problems in this book--they are real problems, not designed to illustrate the use of any particular mathematical technique. Meerschaert's emphasis on principles and general techniques offers students the mathematical background they need to model problems in a wide range of disciplines. Increased support for instructors, including MATLAB material New sections on time series analysis and diffusion models Additional problems with international focus such as whale and dolphin populations, plus updated optimization problems




Mathematical Paradigms of Climate Science


Book Description

This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 (“Mathematics of Planet Earth 2013”). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth’s environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation techniques for climate modeling is amply illustrated in this volume, which also identifies important future challenges.




Data-Driven Science and Engineering


Book Description

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.




Dynamical Systems Theory


Book Description

The quest to ensure perfect dynamical properties and the control of different systems is currently the goal of numerous research all over the world. The aim of this book is to provide the reader with a selection of methods in the field of mathematical modeling, simulation, and control of different dynamical systems. The chapters in this book focus on recent developments and current perspectives in this important and interesting area of mechanical engineering. We hope that readers will be attracted by the topics covered in the content, which are aimed at increasing their academic knowledge with competences related to selected new mathematical theoretical approaches and original numerical tools related to a few problems in dynamical systems theory.




Science at the Frontier


Book Description

Science at the Frontier takes you on a journey through the minds of some of the nation's leading young scientists as they explore the most exciting areas of discovery today. Based on the second Frontiers of Science symposium sponsored by the National Academy of Sciences, this book describes recent accomplishments and new directions in ten basic fields, represented by outstanding scientists convening to discuss their research. It captures the excitement and personal quality of these exchanges, sometimes pointing to surprising connections spanning the boundaries of traditional disciplines, while providing a context for the reader that explains the basic scientific framework for the fields under discussion. The volume explores: New modifications to scientific theory as geologists probe deep inside the earth and astrophysicists reach to the limits of the observable universe for answers to some of nature's most fundamental and vexing questions. The influence of research in smog formation on the public debate about how to effectively control air pollution. The increasing use of computer modeling in science, from describing the evolution of cellular automata to revealing the workings of the human brain via neural networks. The rise of dynamical systems (the study of chaotic behavior in nature) to a full-fledged science. The search to understand the regulation of gene activity and the many biological problems-such as the onset of cancer-to which it applies. Recent progress in the quest to transform what we know about photosynthesis into functional, efficient systems to tap the sun's energy. Current developments in magnetic resonance imaging and its promise for new breakthroughs in medical diagnosis. Throughout this work the reader is witness to scientific discovery and debate centered on such common concerns as the dramatic and transforming effect of computers on scientists' thinking and research; the development of more cross-disciplinary perspectives; and the very nature of the scientific enterprise itself-what it is to be part of it, and its significance for society. Science at the Frontier is must reading for informed lay readers, scientists interested in fields other than their own, and science students considering a future specialization.