A Biologist's Guide to Mathematical Modeling in Ecology and Evolution


Book Description

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available




Mathematical Models of Social Evolution


Book Description

Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.




Modeling Evolution


Book Description

Computer modeling is now an integral part of research in evolutionary biology. This book outlines how evolutionary questions are formulated and how, in practice, they can be resolved by analytical and numerical methods.




GUIDE FOR THE PERPLEXED


Book Description

The author of the world wide best-seller, Small Is Beautiful, now tackles the subject of Man, the World, and the Meaning of Living. Schumacher writes about man's relation to the world. man has obligations -- to other men, to the earth, to progress and technology, but most importantly himself. If man can fulfill these obligations, then and only then can he enjoy a real relationship with the world, then and only then can he know the meaning of living. Schumacher says we need maps: a "map of knowledge" and a "map of living." The concern of the mapmaker--in this instance, Schumacher--is to find for everything it's proper place. Things out of place tend to get lost; they become invisible and there proper places end to be filled by other things that ought not be there at all and therefore serve to mislead. A Guide for the Perplexed teaches us to be our own map makers. This constantly surprising, always stimulating book will be welcomed by a large audience, including the many new fans who believe strongly in what Schumacher has to say.




Mathematical Modeling for the Life Sciences


Book Description

Provides a wide range of mathematical models currently used in the life sciences Each model is thoroughly explained and illustrated by example Includes three appendices to allow for independent reading




Mathematical Models in Biology


Book Description

This introductory textbook on mathematical biology focuses on discrete models across a variety of biological subdisciplines. Biological topics treated include linear and non-linear models of populations, Markov models of molecular evolution, phylogenetic tree construction, genetics, and infectious disease models. The coverage of models of molecular evolution and phylogenetic tree construction from DNA sequence data is unique among books at this level. Computer investigations with MATLAB are incorporated throughout, in both exercises and more extensive projects, to give readers hands-on experience with the mathematical models developed. MATLAB programs accompany the text. Mathematical tools, such as matrix algebra, eigenvector analysis, and basic probability, are motivated by biological models and given self-contained developments, so that mathematical prerequisites are minimal.




Modeling Life


Book Description

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?




The Role of Mathematics in Evolutionary Theory


Book Description

The central role of mathematical modeling in modern evolutionary theory has raised a concern as to why and how abstract formulae can say anything about empirical phenomena of evolution. This Element introduces existing philosophical approaches to this problem and proposes a new account according to which evolutionary models are based on causal, and not just mathematical, assumptions. The novel account features causal models both as the Humean 'uniform nature' underlying evolutionary induction and as the organizing framework that integrates mathematical and empirical assumptions into a cohesive network of beliefs that functions together to achieve epistemic goals of evolutionary biology.




Some Mathematical Models from Population Genetics


Book Description

This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.




Mathematical Models for Society and Biology


Book Description

Mathematical Models for Society and Biology, 2e, is a useful resource for researchers, graduate students, and post-docs in the applied mathematics and life science fields. Mathematical modeling is one of the major subfields of mathematical biology. A mathematical model may be used to help explain a system, to study the effects of different components, and to make predictions about behavior. Mathematical Models for Society and Biology, 2e, draws on current issues to engagingly relate how to use mathematics to gain insight into problems in biology and contemporary society. For this new edition, author Edward Beltrami uses mathematical models that are simple, transparent, and verifiable. Also new to this edition is an introduction to mathematical notions that every quantitative scientist in the biological and social sciences should know. Additionally, each chapter now includes a detailed discussion on how to formulate a reasonable model to gain insight into the specific question that has been introduced. - Offers 40% more content – 5 new chapters in addition to revisions to existing chapters - Accessible for quick self study as well as a resource for courses in molecular biology, biochemistry, embryology and cell biology, medicine, ecology and evolution, bio-mathematics, and applied math in general - Features expanded appendices with an extensive list of references, solutions to selected exercises in the book, and further discussion of various mathematical methods introduced in the book