Mathematical Modelling Courses for Engineering Education


Book Description

As the role of the modern engineer is markedly different from that of even a decade ago, the theme of engineering mathematics educa tion (EME) is an important one. The need for mathematical model ling (MM) courses and consideration of the educational impact of computer-based technology environments merit special attention. This book contains the proceeding of the NATO Advanced Research Workshop held on this theme in July 1993. We have left the industrial age behind and have entered the in formation age. Computers and other emerging technologies are penetrating society in depth and gaining a strong influence in de termining how in future society will be organised, while the rapid change of information requires a more qualified work force. This work force is vital to high technology and economic competitive ness in many industrialised countries throughout the world. Within this framework, the quality of EME has become an issue. It is expected that the content of mathematics courses taught in schools of engineering today have to be re-evaluated continuously with regard to computer-based technology and the needs of mod ern information society. The main aim of the workshop was to pro vide a forum for discussion between mathematicians, engineering scientists, mathematics educationalists, and courseware develop ers in the higher education sector and to focus on the issues and problems of the design of more relevant and appropriate MM courses for engineering education.




Models and Modeling in Engineering Education


Book Description

The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds.




An Introduction to Mathematical Modeling


Book Description

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.




Modeling Students' Mathematical Modeling Competencies


Book Description

Modeling Students’ Mathematical Modeling Competencies offers welcome clarity and focus to the international research and professional community in mathematics, science, and engineering education, as well as those involved in the sciences of teaching and learning these subjects.




Mathematical Modelling


Book Description

This book continues the ICTMA tradition of influencing teaching and learning in the application of mathematical modelling. Each chapter shows how real life problems can be discussed during university lectures, in school classrooms and industrial research. International experts contribute their knowledge and experience by providing analysis, insight and comment whilst tackling large and complex problems by applying mathematical modelling. This book covers the proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications. Covers the proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications Continues the ICTMA tradition of influencing teaching and learning in the application of mathematical modelling Shows how real life problems can be discussed during university lectures, in school classrooms and industrial research




Mathematical Models in Natural Science and Engineering


Book Description

This book has come into being as a result ofthe author's lectures on mathematical modelling rendered to the students, BS and MS degree holders specializing in applied mathematics and computer science and to post-graduate students in exact sciences of the Nizhny Novgorod State University after N.!. Lobatchevsky. These lectures are adapted and presented as a single whole ab out mathematical models and modelling. This new course of lectures appeared because the contemporary Russian educational system in applied mathematics rested upon a combination of fundamental and applied mathematics training; this way of training oriented students upon solving only the exactly stated mathematical problems, and thus there was created a certain estrangement to the most essential stages and sides of real solutions for applied problems, such as thinking over and deeply piercing the essence of a specific problem and its mathematical statement. This statement embraces simplifications, adopted idealizations and creating a mathematical model, its correction and matching the results obtained against a real system. There also existed another main objective, namely to orient university graduates in their future research not only upon purely mathematical issues but also upon comprehending and widely applying mathematics as a universal language of contemporary exact science, and mathematical modelling as a powerful me ans for studying nature, engineering and human society.




Mathematical Modeling and Simulation


Book Description

Learn to use modeling and simulation methods to attack real-world problems, from physics to engineering, from life sciences to process engineering Reviews of the first edition (2009): "Perfectly fits introductory modeling courses [...] and is an enjoyable reading in the first place. Highly recommended [...]" —Zentralblatt MATH, European Mathematical Society, 2009 "This book differs from almost all other available modeling books in that [the authors address] both mechanistic and statistical models as well as 'hybrid' models. [...] The modeling range is enormous." —SIAM Society of Industrial and Applied Mathematics, USA, 2011 This completely revised and substantially extended second edition answers the most important questions in the field of modeling: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? What kind of mathematical problems appear and how can these be efficiently solved using professional free of charge open source software? The book addresses undergraduates and practitioners alike. Although only basic knowledge of calculus and linear algebra is required, the most important mathematical structures are discussed in sufficient detail, ranging from statistical models to partial differential equations and accompanied by examples from biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical, and process engineering. About 200 pages of additional material include a unique chapter on virtualization, Crash Courses on the data analysis and programming languages R and Python and on the computer algebra language Maxima, many new methods and examples scattered throughout the book and an update of all software-related procedures and a comprehensive book software providing templates for typical modeling tasks in thousands of code lines. The book software includes GmLinux, an operating system specifically designed for this book providing preconfigured and ready-to-use installations of OpenFOAM, Salome, FreeCAD/CfdOF workbench, ParaView, R, Maxima/wxMaxima, Python, Rstudio, Quarto/Markdown and other free of charge open source software used in the book.




Mathematical Modelling Education in East and West


Book Description

This book documents ongoing research and theorizing in the sub-field of mathematics education devoted to the teaching and learning of mathematical modelling and applications. Mathematical modelling provides a way of conceiving and resolving problems in people’s everyday lives as well as sophisticated new problems for society at large. Mathematical tradition in China that emphasizes algorithm and computation has now seen a renaissance in mathematical modelling and applications where China has made significant progress with its economy, science and technology. In recent decades, teaching and learning of mathematical modelling as well as contests in mathematical modelling have been flourishing at different levels of education in China. Today, teachers and researchers in China become keener to learn from their colleagues from Western countries and other parts of the world in research and teaching of mathematical modelling and applications. The book provides a dialogue and communication between colleagues from across the globe with new impetus and resources for mathematical modelling education and its research in both West and East with new ideas on modelling teaching and practices, inside and outside classrooms. All authors of this book are members of the International Community of Teachers of Mathematical Modelling and Applications (ICTMA), the peak research body into researching the teaching, assessing and learning of mathematical modelling at all levels of education from the early years to tertiary education as well as in the workplace. The book is of interest to researchers, mathematics educators, teacher educators, education administrators, policy writers, curriculum developers, professional developers, in-service teachers and pre-service teachers including those interested in mathematical literacy.




Improving Applied Mathematics Education


Book Description

This book presents various contemporary topics in applied mathematics education and addresses both interested undergraduate instructors and STEM education researchers. The diverse set of topics of this edited volume range from analyzing the demographics of the United States mathematics community, discussing the teaching of calculus using modern tools, engaging students to use applied mathematics to learn about and solve problems of global significance, developing a general education course for humanities and social sciences students that features applications of mathematics, and describing local mathematical modeling competitions and their use in providing authentic experiences for students in applying mathematics to real world situations. The authors represent diversity along multiple dimensions of difference: race, gender, institutional affiliation, and professional experience.




Trends in Teaching and Learning of Mathematical Modelling


Book Description

This book contains suggestions for and reflections on the teaching, learning and assessing of mathematical modelling and applications in a rapidly changing world, including teaching and learning environments. It addresses all levels of education from universities and technical colleges to secondary and primary schools. Sponsored by the International Community of Teachers of Mathematical Modelling and Applications (ICTMA), it reflects recent ideas and methods contributed by specialists from 30 countries in Africa, the Americas, Asia, Australia and Europe. Inspired by contributions to the Fourteenth Conference on the Teaching of Mathematical Modelling and Applications (ICTMA14) in Hamburg, 2009, the book describes the latest trends in the teaching and learning of mathematical modelling at school and university including teacher education. The broad and versatile range of topics will stress the international state-of-the-art on the following issues: Theoretical reflections on the teaching and learning of modelling Modelling competencies Cognitive perspectives on modelling Modelling examples for all educational levels Practice of modelling in school and at university level Practices in Engineering and Applications