Mathematical Modeling, Simulations, and AI for Emergent Pandemic Diseases


Book Description

Mathematical Modeling, Simulations, and Artificial Intelligence for Emergent Pandemic Diseases: Lessons Learned from COVID-19 includes new research, models and simulations developed during the COVID-19 pandemic into how mathematical methods and practice can impact future response. Chapters go beyond forecasting COVID-19, bringing different scale angles and mathematical techniques (e.g., ordinary differential and difference equations, agent-based models, artificial intelligence, and complex networks) which could have potential use in modeling other emergent pandemic diseases. A major part of the book focuses on preparing the scientific community for the next pandemic, particularly the application of mathematical modeling in ecology, economics and epidemiology. Readers will benefit from learning how to apply advanced mathematical modeling to a variety of topics of practical interest, including optimal allocations of masks and vaccines but also more theoretical problems such as the evolution of viral variants. Provides a comprehensive overview of the state-of-the-art in mathematical modeling and computational simulations for emerging pandemics Presents modeling techniques that go beyond COVID-19, and that can be applied to tailoring interventions to attenuate high death tolls Includes illustrations, tables and dialog boxes to explain highly specialized concepts and insights with complex algorithms, along with links to programming code




Researches and Applications of Artificial Intelligence to Mitigate Pandemics


Book Description

Researches and Applications of Artificial Intelligence to Mitigate Pandemics: History, Diagnostic Tools, Epidemiology, Healthcare, and Technology offers readers an interdisciplinary view of state-of-art research related to the COVID-19 outbreak, with a focus on tactics employed to model the number of cases of COVID-19 (time series modeling), models employed to diagnostics COVID-19 based on images, and the panoramic of COVID-19 since its discovery and up to this book's publication. This book showcases the algorithms and models available to manage pandemic data, the role of AI, IoT and Mathematical Modeling, how to prevent and fight COVID-19, and the existing medical, social and pharmaceutical support. Chapters cover methods and protocols, the basics and history of diseases, the fast diagnosis of disease with different automated algorithms and artificial intelligence tools and techniques, the methods of handling epidemiology for mitigating the spread of disease, artificial intelligence and mathematical modeling techniques, and how mental and physical health is affected with social media usage. Explains novel and hybrid high quality artificial intelligence methodologies, techniques, algorithms, architectures, tools and methods to cope with pandemics Covers rapid point-of-care diagnostics, presents details on varied mathematical models developed to control epidemiology, and lists existing measures to disseminate the spread of infection using computational methods Highlights the negative effect of social media and other sources by applying preventive measures to combat depression and anxiety




COVID-19 Pandemic Dynamics


Book Description

This book highlights the estimate of epidemic characteristics for different countries/regions in the world with the use of known SIR (susceptible-infected-removed) model for the dynamics of the epidemic, the known exact solution of the linear differential equations and statistical approach developed before. The COVID-19 pandemic is of great interest to researchers due to its high mortality and a negative impact to the world economy. Correct simulation of the pandemic dynamics needs complicated mathematical models and many efforts for unknown parameters identification. The simple method of detection of the new pandemic wave is proposed and SIR model generalized. The hidden periods, epidemic durations, final numbers of cases, the effective reproduction numbers and probabilities of meeting an infected person are presented for countries like USA, Germany, UK, the Republic of Korea, Italy, Spain, France, the Republic of Moldova, Ukraine, and for the world. The presented information is useful to regulate the quarantine activities and to predict the medical and economic consequences of different/future pandemics.




Mathematics of Public Health


Book Description

This volume addresses SDG 3 from a mathematical standpoint, sharing novel perspectives of existing communicable disease modelling technologies of the next generation and disseminating new developments in modelling methodologies and simulation techniques. These methodologies are important for training and research in communicable diseases and can be applied to other threats to human health. The contributions contained in this collection/book cover a range of modelling techniques that have been and may be used to support decision-making on critical health related issues such as: Resource allocation Impact of climate change on communicable diseases Interaction of human behaviour change, and disease spread Disease outbreak trajectories projection Public health interventions evaluation Preparedness and mitigation of emerging and re-emerging infectious diseases outbreaks Development of vaccines and decisions around vaccine allocation and optimization The diseases and public health issues in this volume include, but are not limited to COVID-19, HIV, Influenza, antimicrobial resistance (AMR), the opioid epidemic, Lyme Disease, Zika, and Malaria. In addition, this volume compares compartmental models, agent-based models, machine learning and network. Readers have an opportunity to learn from the next generation perspective of evolving methodologies and algorithms in modelling infectious diseases, the mathematics behind them, the motivation for them, and some applications to supporting critical decisions on prevention and control of communicable diseases. This volume was compiled from the weekly seminar series organized by the Mathematics for Public Health (MfPH) Next Generation Network. This network brings together the next generation of modellers from across Canada and the world, developing the latest mathematical models, modeling methodologies, and analytical and simulation tools for communicable diseases of global public health concerns. The weekly seminar series provides a unique forum for this network and their invited guest speakers to share their perspectives on the status and future directions of mathematics of public health.




COVID-19 Epidemiology and Virus Dynamics


Book Description

This book addresses the COVID-19 pandemic from a quantitative perspective based on mathematical models and methods largely used in nonlinear physics. It aims to study COVID-19 epidemics in countries and SARS-CoV-2 infections in individuals from the nonlinear physics perspective and to model explicitly COVID-19 data observed in countries and virus load data observed in COVID-19 patients. The first part of this book provides a short technical introduction into amplitude spaces given by eigenvalues, eigenvectors, and amplitudes.In the second part of the book, mathematical models of epidemiology are introduced such as the SIR and SEIR models and applied to describe COVID-19 epidemics in various countries around the world. In the third part of the book, virus dynamics models are considered and applied to infections in COVID-19 patients. This book is written for researchers, modellers, and graduate students in physics and medicine, epidemiology and virology, biology, applied mathematics, and computer sciences. This book identifies the relevant mechanisms behind past COVID-19 outbreaks and in doing so can help efforts to stop future COVID-19 outbreaks and other epidemic outbreaks. Likewise, this book points out the physics underlying SARS-CoV-2 infections in patients and in doing so supports a physics perspective to address human immune reactions to SARS-CoV-2 infections and similar virus infections.




Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases


Book Description

The contributions by epidemic modeling experts describe how mathematical models and statistical forecasting are created to capture the most important aspects of an emerging epidemic.Readers will discover a broad range of approaches to address questions, such as Can we control Ebola via ring vaccination strategies? How quickly should we detect Ebola cases to ensure epidemic control? What is the likelihood that an Ebola epidemic in West Africa leads to secondary outbreaks in other parts of the world? When does it matter to incorporate the role of disease-induced mortality on epidemic models? What is the role of behavior changes on Ebola dynamics? How can we better understand the control of cholera or Ebola using optimal control theory? How should a population be structured in order to mimic the transmission dynamics of diseases such as chlamydia, Ebola, or cholera? How can we objectively determine the end of an epidemic? How can we use metapopulation models to understand the role of movement restrictions and migration patterns on the spread of infectious diseases? How can we capture the impact of household transmission using compartmental epidemic models? How could behavior-dependent vaccination affect the dynamical outcomes of epidemic models? The derivation and analysis of the mathematical models addressing these questions provides a wide-ranging overview of the new approaches being created to better forecast and mitigate emerging epidemics. This book will be of interest to researchers in the field of mathematical epidemiology, as well as public health workers.




Mathematical Modeling and Intelligent Control for Combating Pandemics


Book Description

The contributions in this carefully curated volume, present cutting-edge research in applied mathematical modeling for combating COVID-19 and other potential pandemics. Mathematical modeling and intelligent control have emerged as powerful computational models and have shown significant success in combating any pandemic. These models can be used to understand how COVID-19 or other pandemics can spread, analyze data on the incidence of infectious diseases, and predict possible future scenarios concerning pandemics. This book also discusses new models, practical solutions, and technological advances related to detecting and analyzing COVID-19 and other pandemics based on intelligent control systems that assist decision-makers, managers, professionals, and researchers. Much of the book focuses on preparing the scientific community for the next pandemic, particularly the application of mathematical modeling and intelligent control for combating the Monkeypox virus and Langya Henipavirus.




Disease Modelling and Public Health, Part A


Book Description

Disease Modelling and Public Health, Part A, Volume 36 addresses new challenges in existing and emerging diseases with a variety of comprehensive chapters that cover Infectious Disease Modeling, Bayesian Disease Mapping for Public Health, Real time estimation of the case fatality ratio and risk factor of death, Alternative Sampling Designs for Time-To-Event Data with Applications to Biomarker Discovery in Alzheimer's Disease, Dynamic risk prediction for cardiovascular disease: An illustration using the ARIC Study, Theoretical advances in type 2 diabetes, Finite Mixture Models in Biostatistics, and Models of Individual and Collective Behavior for Public Health Epidemiology. As a two part volume, the series covers an extensive range of techniques in the field. It present a vital resource for statisticians who need to access a number of different methods for assessing epidemic spread in population, or in formulating public health policy. Presents a comprehensive, two-part volume written by leading subject experts Provides a unique breadth and depth of content coverage Addresses the most cutting-edge developments in the field Includes chapters on Ebola and the Zika virus; topics which have grown in prominence and scholarly output




An Introduction to Mathematical Modeling of Infectious Diseases


Book Description

This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.




Mathematical Modelling of Immune Response in Infectious Diseases


Book Description

Beginning his work on the monograph to be published in English, this author tried to present more or less general notions of the possibilities of mathematics in the new and rapidly developing science of infectious immunology, describing the processes of an organism's defence against antigen invasions. The results presented in this monograph are based on the construc tion and application of closed models of immune response to infections which makes it possible to approach problems of optimizing the treat ment of chronic and hypertoxic forms of diseases. The author, being a mathematician, had creative long-Iasting con tacts with immunologists, geneticist, biologists, and clinicians. As far back as 1976 it resulted in the organization of a special seminar in the Computing Center of Siberian Branch of the USSR Academy of Sci ences on mathematical models in immunology. The seminar attracted the attention of a wide circle of leading specialists in various fields of science. All these made it possible to approach, from a more or less united stand point, the construction of models of immune response, the mathematical description of the models, and interpretation of results.