Mathematical Models for Elastic Structures


Book Description

Elastic structures, conceived as slender bodies able to transmit loads, have been studied by scientists and engineers for centuries. By the seventeenth century several useful theories of elastic structures had emerged, with applications to civil and mechanical engineering problems. In recent years improved mathematical tools have extended applications into new areas such as geomechanics and biomechanics. This book, first published in 1998, offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures, which are used to solve practical problems with particular emphasis on nonlinear problems. This collection of interesting and important problems in elastic structures will appeal to a broad range of scientists, engineers and graduate students working in the area of structural mechanics.




Mathematical Models for Elastic Structures


Book Description

During the seventeenth century, several useful theories of elastic structures emerged, with applications to civil and mechanical engineering problems. Recent and improved mathematical tools have extended applications into new areas such as mathematical physics, geomechanics, and biomechanics. This book offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures that are used to solve practical problems with particular emphasis on nonlinear problems.







Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures


Book Description

The purpose of this monograph is threefold. First, mathematical models of the transient behavior of some or all of the state variables describing the motion of multiple-link flexible structures will be developed. The structures which we have in mind consist of finitely many interconnected flexible ele ments such as strings, beams, plates and shells or combinations thereof and are representative of trusses, frames, robot arms, solar panels, antennae, deformable mirrors, etc. , currently in use. For example, a typical subsys tem found in almost all aircraft and space vehicles consists of beam, plate and/or shell elements attached to each other in a rigid or flexible manner. Due to limitations on their weights, the elements themselves must be highly flexible, and due to limitations on their initial configuration (i. e. , before de ployment), those aggregates often have to contain several links so that the substructure may be unfolded or telescoped once it is deployed. The point of view we wish to adopt is that in order to understand completely the dynamic response of a complex elastic structure it is not sufficient to con to take into account the sider only its global motion but also necessary flexibility of individual elements and the interaction and transmission of elastic effects such as bending, torsion and axial deformations at junctions where members are connected to each other. The second object of this book is to provide rigorous mathematical analyses of the resulting models.




Mathematical Models for Structural Reliability Analysis


Book Description

Mathematical Models for Structural Reliability Analysis offers mathematical models for describing load and material properties in solving structural engineering problems. Examples are provided, demonstrating how the models are implemented, and the limitations of the models are clearly stated. Analytical solutions are also discussed, and methods are clearly distinguished from models. The authors explain both theoretical models and practical applications in a clear, concise, and readable fashion.




Introduction to Mathematical Elasticity


Book Description

This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.




Mathematical Modelling in Solid Mechanics


Book Description

This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.




Advances in Mathematical Modeling and Experimental Methods for Materials and Structures


Book Description

This collection of cutting-edge papers, written by leading authors in honor of Professor Jacob Aboudi, covers a wide spectrum of topics in the field, presents both theoretical and experimental approaches, and suggests directions for possible future research.




Mathematical Modelling of Waves in Multi-Scale Structured Media


Book Description

Mathematical Modelling of Waves in Multi-Scale Structured Media presents novel analytical and numerical models of waves in structured elastic media, with emphasis on the asymptotic analysis of phenomena such as dynamic anisotropy, localisation, filtering and polarisation as well as on the modelling of photonic, phononic, and platonic crystals.




Mathematical Modeling


Book Description

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.