Mathematical Models in Marketing


Book Description

Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the marketing field.




Mathematical Models of Distribution Channels


Book Description

Mathematical Models of Distribution Channels identifies eight "Channel Myths" that characterize almost all analytical research on distribution channels. The authors prove that models that incorporate one or more Channel Myths generate distorted conclusions; they also develop a methodology that will enable researchers to avoid falling under the influence of any Channel Myth.




Building Models for Marketing Decisions


Book Description

This book is about marketing models and the process of model building. Our primary focus is on models that can be used by managers to support marketing decisions. It has long been known that simple models usually outperform judgments in predicting outcomes in a wide variety of contexts. For example, models of judgments tend to provide better forecasts of the outcomes than the judgments themselves (because the model eliminates the noise in judgments). And since judgments never fully reflect the complexities of the many forces that influence outcomes, it is easy to see why models of actual outcomes should be very attractive to (marketing) decision makers. Thus, appropriately constructed models can provide insights about structural relations between marketing variables. Since models explicate the relations, both the process of model building and the model that ultimately results can improve the quality of marketing decisions. Managers often use rules of thumb for decisions. For example, a brand manager will have defined a specific set of alternative brands as the competitive set within a product category. Usually this set is based on perceived similarities in brand characteristics, advertising messages, etc. If a new marketing initiative occurs for one of the other brands, the brand manager will have a strong inclination to react. The reaction is partly based on the manager's desire to maintain some competitive parity in the mar keting variables.







Mathematical Models and Marketing Management


Book Description

Study on the value of simulation in operational research in respect of marketing management - covers the use and limitations of mathematical models in publicity, price-setting, market demand, etc., and includes administrative aspects and decision making. References and diagrams.




Handbook of Marketing Decision Models


Book Description

Marketing models is a core component of the marketing discipline. The recent developments in marketing models have been incredibly fast with information technology (e.g., the Internet), online marketing (e-commerce) and customer relationship management (CRM) creating radical changes in the way companies interact with their customers. This has created completely new breeds of marketing models, but major progress has also taken place in existing types of marketing models. Handbook of Marketing Decision Models presents the state of the art in marketing decision models. The book deals with new modeling areas, such as customer relationship management, customer value and online marketing, as well as recent developments in other advertising, sales promotions, sales management, and competition are dealt with. New developments are in consumer decision models, models for return on marketing, marketing management support systems, and in special techniques such as time series and neural nets.




Handbook of Marketing Decision Models


Book Description

Marketing models is a core component of the marketing discipline. The recent developments in marketing models have been incredibly fast with information technology (e.g., the Internet), online marketing (e-commerce) and customer relationship management (CRM) creating radical changes in the way companies interact with their customers. This has created completely new breeds of marketing models, but major progress has also taken place in existing types of marketing models. The HANDBOOK OF MARKETING DECISION MODELS presents the state of the art in marketing decision models, dealing with new modeling areas such as customer relationship management, customer value and online marketing, but also describes recent developments in other areas. In the category of marketing mix models, the latest models for advertising, sales promotions, sales management, and competition are dealt with. New developments are presented in consumer decision models, models for return on marketing, marketing management support systems, and in special techniques such as time series and neural nets. Not only are the most recent models discussed, but the book also pays attention to the implementation of marketing models in companies and to applications in specific industries.




Mathematical Models of Social Evolution


Book Description

Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.




An Introduction to Mathematical Modeling


Book Description

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.




Mathematical Modelling, Optimization and Their Applications


Book Description

Modelling and optimization are the key tools for scientific analysis of real life systems. The application of modelling and optimization for the study of business and the market system provide advantages over the competitors.