Mathematical Models of Plant-Herbivore Interactions


Book Description

Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.




Mathematical Models of Plant-herbivore Interactions


Book Description

"Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology."--Provided by publisher.




Mathematical Models of Plant-Herbivore Interactions


Book Description

Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.




Mathematical Models in Biology


Book Description

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.




Evolutionary Ecology of Plant-Herbivore Interaction


Book Description

Plant-herbivore interactions are a central topic in evolutionary ecology. Historically, their study has been a cornerstone for coevolutionary theory. Starting from classic ecological studies at the phenotypic level, it has since expanded to molecular and genomic approaches. After a historical perspective, the book’s subsequent chapters cover a wide range of topics: from populations to ecosystems; plant- and herbivore-focused studies; in natural and in man-modified ecosystems; and both micro- and macro-evolutionary levels. All chapters include valuable background information and empirical evidence. Given its scope, the book will be of interest to both students and researchers, and will hopefully stimulate further research in this exciting field of evolutionary biology.




Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics


Book Description

This volume offers a collection of carefully selected, peer-reviewed papers presented at the BIOMAT 2018 International Symposium, which was held at the University Hassan II, Morocco, from October 29th to November 2nd, 2018. The topics covered include applications of mathematical modeling in hepatitis B, HIV and Chikungunya infections; tumor cell dynamics; inflammatory processes; chemotherapeutic drug effects; and population dynamics. Also discussing the application of techniques like the generalized stochastic Milevsky-Promislov model, numerical simulations and convergence of discrete and continuous models, it is an invaluable resource on interdisciplinary research in mathematical biology for students, researchers, and professionals. Held every year since 2001, the BIOMAT International Symposium gathers together, in a single conference, researchers from Mathematics, Physics, Biology, and affine fields to promote the interdisciplinary exchange of results, ideas and techniques, promoting truly international cooperation for problem discussion. The 2018 edition of BIOMAT International Symposium received contributions by authors from seventeen countries: Algeria, Brazil, Cameroon, Canada, Chad, Colombia, France, Germany, Hungary, Italy, Mali, Morocco, Nigeria, Poland, Portugal, Russia, and Senegal. Selected papers presented at the 2017 edition of this Symposium were also published by Springer, in the volume “Trends in Biomathematics: Modeling, Optimization and Computational Problems” (978-3-319-91091-8).




Molecular Biology of Ecology


Book Description







Mathematical Biology


Book Description

Mathematics has always benefited from its involvement with developing sciences. Each successive interaction revitalises and enhances the field. Biomedical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved in the biosciences they will simply not be a part of what are likely to be the most important and exciting scientific discoveries of all time. Mathematical biology is a fast growing, well recognised, albeit not clearly defined, subject and is, to my mind, the most exciting modern application of mathematics. The increasing use of mathematics in biology is inevitable as biol ogy becomes more quantitative. The complexity of the biological sciences makes interdisciplinary involvement essential. For the mathematician, biology opens up new and exciting branches while for the biologist mathematical modelling offers another research tool commmensurate with a new powerful laboratory technique but only if used appropriately and its limitations recognised. However, the use of esoteric mathematics arrogantly applied to biological problems by mathemati cians who know little about the real biology, together with unsubstantiated claims as to how important such theories are, does little to promote the interdisciplinary involvement which is so essential. Mathematical biology research, to be useful and interesting, must be relevant biologically.




Issues in Applied Mathematics: 2013 Edition


Book Description

Issues in Applied Mathematics / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Mathematical Physics. The editors have built Issues in Applied Mathematics: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mathematical Physics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied Mathematics: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.