Mathematical models


Book Description




MATHEMATICAL MODELS – Volume III


Book Description

Mathematical Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Mathematical Models discusses matters of great relevance to our world such as: Basic Principles of Mathematical Modeling; Mathematical Models in Water Sciences; Mathematical Models in Energy Sciences; Mathematical Models of Climate and Global Change; Infiltration and Ponding; Mathematical Models of Biology; Mathematical Models in Medicine and Public Health; Mathematical Models of Society and Development. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.




Guide to Mathematical Modelling


Book Description

A basic introduction to Mathematical Modelling, this book encourages the reader to participate in the investigation of a wide variety of modelling examples. These are carefully paced so that the readers can identify and develop the skills which are required for successful modelling. The examples also promote an appreciation of the enormous range of problems to which mathematical modelling skills can be usefully applied.




Mathematical models


Book Description




An Introduction to Mathematical Modeling


Book Description

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.




Mathematical Modeling


Book Description

Mathematical Modeling: Models, Analysis and Applications, Second Edition introduces models of both discrete and continuous systems. This book is aimed at newcomers who desires to learn mathematical modeling, especially students taking a first course in the subject. Beginning with the step-by-step guidance of model formulation, this book equips the reader about modeling with difference equations (discrete models), ODE’s, PDE’s, delay and stochastic differential equations (continuous models). This book provides interdisciplinary and integrative overview of mathematical modeling, making it a complete textbook for a wide audience. A unique feature of the book is the breadth of coverage of different examples on mathematical modelling, which include population models, economic models, arms race models, combat models, learning model, alcohol dynamics model, carbon dating, drug distribution models, mechanical oscillation models, epidemic models, tumor models, traffic flow models, crime flow models, spatial models, football team performance model, breathing model, two neuron system model, zombie model and model on love affairs. Common themes such as equilibrium points, stability, phase plane analysis, bifurcations, limit cycles, period doubling and chaos run through several chapters and their interpretations in the context of the model have been highlighted. In chapter 3, a section on estimation of system parameters with real life data for model validation has also been discussed. Features Covers discrete, continuous, spatial, delayed and stochastic models. Over 250 illustrations, 300 examples and exercises with complete solutions. Incorporates MATHEMATICA® and MATLAB®, each chapter contains Mathematica and Matlab codes used to display numerical results (available at CRC website). Separate sections for Projects. Several exercise problems can also be used for projects. Presents real life examples of discrete and continuous scenarios. The book is ideal for an introductory course for undergraduate and graduate students, engineers, applied mathematicians and researchers working in various areas of natural and applied sciences.




The Nature of Mathematical Modeling


Book Description

This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.




Mathematical Modelling Techniques


Book Description

"Engaging, elegantly written." — Applied Mathematical Modelling. A distinguished theoretical chemist and engineer discusses the types of models — finite, statistical, stochastic, and more — as well as how to formulate and manipulate them for best results. Filled with numerous examples, the book includes three appendices offering further examples treated in more detail.




Mathematical Models in the Biosciences II


Book Description

Volume Two of an award-winning professor’s introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the second of a two-part series exploring essential concepts of calculus in the context of biological systems. Building on the essential ideas and theories of basic calculus taught in Mathematical Models in the Biosciences I, this book focuses on epidemiological models, mathematical foundations of virus and antiviral dynamics, ion channel models and cardiac arrhythmias, vector calculus and applications, and evolutionary models of disease. It also develops differential equations and stochastic models of many biomedical processes, as well as virus dynamics, the Clancy-Rudy model to determine the genetic basis of cardiac arrhythmias, and a sketch of some systems biology. Based on the author’s calculus class at Yale, the book makes concepts of calculus less abstract and more relatable for science majors and premedical students.