Mathematical Physics with Partial Differential Equations


Book Description

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.




Partial Differential Equations of Mathematical Physics


Book Description

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.




Mathematical Physics with Partial Differential Equations


Book Description

Mathematical Physics with Partial Differential Equations, Second Edition, is designed for upper division undergraduate and beginning graduate students taking mathematical physics taught out by math departments. The new edition is based on the success of the first, with a continuing focus on clear presentation, detailed examples, mathematical rigor and a careful selection of topics. It presents the familiar classical topics and methods of mathematical physics with more extensive coverage of the three most important partial differential equations in the field of mathematical physics—the heat equation, the wave equation and Laplace’s equation. The book presents the most common techniques of solving these equations, and their derivations are developed in detail for a deeper understanding of mathematical applications. Unlike many physics-leaning mathematical physics books on the market, this work is heavily rooted in math, making the book more appealing for students wanting to progress in mathematical physics, with particularly deep coverage of Green’s functions, the Fourier transform, and the Laplace transform. A salient characteristic is the focus on fewer topics but at a far more rigorous level of detail than comparable undergraduate-facing textbooks. The depth of some of these topics, such as the Dirac-delta distribution, is not matched elsewhere. New features in this edition include: novel and illustrative examples from physics including the 1-dimensional quantum mechanical oscillator, the hydrogen atom and the rigid rotor model; chapter-length discussion of relevant functions, including the Hermite polynomials, Legendre polynomials, Laguerre polynomials and Bessel functions; and all-new focus on complex examples only solvable by multiple methods. Introduces and evaluates numerous physical and engineering concepts in a rigorous mathematical framework Provides extremely detailed mathematical derivations and solutions with extensive proofs and weighting for application potential Explores an array of detailed examples from physics that give direct application to rigorous mathematics Offers instructors useful resources for teaching, including an illustrated instructor's manual, PowerPoint presentations in each chapter and a solutions manual




Mathematical Methods in Physics


Book Description

This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that




Equations of Mathematical Physics


Book Description

Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.




Partial Differential Equations of Mathematical Physics


Book Description

A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.




Kernel Functions and Elliptic Differential Equations in Mathematical Physics


Book Description

Covers the theory of boundary value problems in partial differential equations and discusses a portion of the theory from a unifying point of view while providing an introduction to each branch of its applications. 1953 edition.




Partial Differential Equations arising from Physics and Geometry


Book Description

Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.




Partial Differential Equations of Mathematical Physics and Integral Equations


Book Description

Superb treatment for math and physical science students discusses modern mathematical techniques for setting up and analyzing problems. Discusses partial differential equations of the 1st order, elementary modeling, potential theory, parabolic equations, more. 1988 edition.