Mathematical Principle and Fractal Analysis of Mesoscale Eddy


Book Description

This book focuses on universal nonlinear dynamics model of mesoscale eddies. The results of this book are not only the direct-type applications of pure mathematical limit cycle theory and fractal theory in practice but also the classic combination of nonlinear dynamic systems in mathematics and the physical oceanography. The universal model and experimental verification not only verify the relevant results that are obtained by Euler's form but also, more importantly, are consistent with observational numerical statistics. Due to the universality of the model, the consequences of the system are richer and more complete. The comprehensive and systematic mathematical modeling of mesoscale eddies is one of the major features of the book, which is particularly suited for readers who are interested to learn fractal analysis and prediction in physical oceanography. The book benefits researchers, engineers, and graduate students in the fields of mesoscale eddies, fractal, chaos, and other applications, etc.




Mathematical Reviews


Book Description




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Physics Briefs


Book Description







The Weather and Climate


Book Description

A new method of modeling the atmosphere, synthesizing data analysis techniques and multifractal statistics, for atmospheric researchers and graduate students.




Ocean Modeling in an Eddying Regime


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 177. This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts Oceanographic Processes and Regimes: Fundamental Questions Ocean Dynamics and State: From Regional to Global Scale, and Modeling at the Mesoscale: State of the Art and Future Directions The volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.




Oceanic Abstracts


Book Description







Data Analysis Methods in Physical Oceanography


Book Description

Data Analysis Methods in Physical Oceanography, Fourth Edition provides a practical reference to established and modern data analysis techniques in earth and ocean sciences. In five sections, the book addresses data acquisition and recording, data processing and presentation, statistical methods and error handling, analysis of spatial data fields, and time series analysis methods. The updated edition includes new information on autonomous platforms and new analysis tools such as "deep learning and convolutional neural networks. A section on extreme value statistics has been added, and the section on wavelet analysis has been expanded. This book brings together relevant techniques and references recent papers where these techniques have been trialed. In addition, it presents valuable examples using physical oceanography data. For students, the sections on data acquisition are useful for a compilation of all the measurement methods. - Includes content co-authored by scientists from academia and industry, both of whom have more than 30 years of experience in oceanographic research and field work - Provides boxed worked examples that address typical data analysis problems, including examples with computer code (e.g., python code, MATLAB code) - Presents brief summaries at the end of the more difficult sections to help readers looking for foundational information