Mathematical Problems from Combustion Theory


Book Description

This monograph evolved over the past five years. It had its origin as a set of lecture notes prepared for the Ninth Summer School of Mathematical Physics held at Ravello, Italy, in 1984 and was further refined in seminars and lectures given primarily at the University of Colorado. The material presented is the product of a single mathematical question raised by Dave Kassoy over ten years ago. This question and its partial resolution led to a successful, exciting, almost unique interdisciplinary col laborative scientific effort. The mathematical models described are often times deceptively simple in appearance. But they exhibit a mathematical richness and beauty that belies that simplicity and affirms their physical significance. The mathe matical tools required to resolve the various problems raised are diverse, and no systematic attempt is made to give the necessary mathematical background. The unifying theme of the monograph is the set of models themselves. This monograph would never have come to fruition without the enthu siasm and drive of Dave Eberly-a former student, now collaborator and coauthor-and without several significant breakthroughs in our understand ing of the phenomena of blowup or thermal runaway which certain models discussed possess. A collaborator and former student who has made significant contribu tions throughout is Alberto Bressan. There are many other collaborators William Troy, Watson Fulks, Andrew Lacey, Klaus Schmitt-and former students-Paul Talaga and Richard Ely-who must be acknowledged and thanked.




Dynamical Issues in Combustion Theory


Book Description

This IMA Volume in Mathematics and its Applications DYNAMICAL ISSUES IN COMBUSTION THEORY is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications." The aim of this workshop was to cross-fertilize research groups working in topics of current interest in combustion dynamics and mathematical methods applicable thereto. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, George R. Sell, Paul Fife, Amable Liiian and Foreman Williams for organizing the meeting. We especially thank Paul Fife, Amable Liiilin and Foreman Williams for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foundation and the Office of Naval Research. Avner Friedman Willard Miller, Jr. ix PREFACE The world ofcombustion phenomena is rich in problems intriguing to the math ematical scientist. They offer challenges on several fronts: (1) modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, (2) devising appropriate asymptotic and computational methods, and (3) developing sound mathematical theories. Papers in the present volume, which are based on talks given at the Workshop on Dynamical Issues in Combustion Theory in November, 1989, describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactiveshocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants.




Combustion Theory


Book Description

Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.




Lectures on Mathematical Combustion


Book Description

An introduction to far-reaching developments in theoretical combustion, with special emphasis on flame stability, a topic that has, to date, benefited most from the application of modern asymptotic methods. The authors provide a modern view of flame theory, and a complete description of the longstanding ignition and explosion problems, including the solutions that were made available independently by Kapila and Kassoy through activation-energy asymptotics, the main theme of this monograph.




Blow-up Theories for Semilinear Parabolic Equations


Book Description

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.







The Mathematics of Combustion


Book Description

This book delves into the rapidly changing area of combustion, in which asymptotic methods and bifurcation theory have made a significant impact as have the constant-density, small-heat-release models and other important contributions.




Stochastic Analysis and Partial Differential Equations


Book Description

This book is a collection of original research papers and expository articles from the scientific program of the 2004-05 Emphasis Year on Stochastic Analysis and Partial Differential Equations at Northwestern University. Many well-known mathematicians attended the events and submitted their contributions for this volume. Topics from stochastic analysis discussed in this volume include stochastic analysis of turbulence, Markov processes, microscopic lattice dynamics, microscopic interacting particle systems, and stochastic analysis on manifolds. Topics from partial differential equations include kinetic equations, hyperbolic conservation laws, Navier-Stokes equations, and Hamilton-Jacobi equations. A variety of methods, such as numerical analysis, homogenization, measure-theoretical analysis, entropy analysis, weak convergence analysis, Fourier analysis, and Ito's calculus, are further developed and applied. All these topics are naturally interrelated and represent a cross-section of the most significant recent advances and current trends and directions in stochastic analysis and partial differential equations. This volume is suitable for researchers and graduate students interested in stochastic analysis, partial differential equations, and related analysis and applications.







Stable Solutions of Elliptic Partial Differential Equations


Book Description

Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces). Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.