Mathematical Programming and Financial Objectives for Scheduling Projects


Book Description

Mathematical Programming and Financial Objectives for Scheduling Projects focuses on decision problems where the performance is measured in terms of money. As the title suggests, special attention is paid to financial objectives and the relationship of financial objectives to project schedules and scheduling. In addition, how schedules relate to other decisions is treated in detail. The book demonstrates that scheduling must be combined with project selection and financing, and that scheduling helps to give an answer to the planning issue of the amount of resources required for a project. The author makes clear the relevance of scheduling to cutting budget costs. The book is divided into six parts. The first part gives a brief introduction to project management. Part two examines scheduling projects in order to maximize their net present value. Part three considers capital rationing. Many decisions on selecting or rejecting a project cannot be made in isolation and multiple projects must be taken fully into account. Since the requests for capital resources depend on the schedules of the projects, scheduling taken on more complexity. Part four studies the resource usage of a project in greater detail. Part five discusses cases where the processing time of an activity is a decision to be made. Part six summarizes the main results that have been accomplished.




Handbook on Project Management and Scheduling Vol.1


Book Description

Due to the increasing importance of product differentiation and collapsing product life cycles, a growing number of value-adding activities in the industry and service sector are organized in projects. Projects come in many forms, often taking considerable time and consuming a large amount of resources. The management and scheduling of projects represents a challenging task, and project performance may have a considerable impact on an organization's competitiveness. This handbook presents state-of-the-art approaches to project management and scheduling. More than sixty contributions written by leading experts in the field provide an authoritative survey of recent developments. The book serves as a comprehensive reference, both, for researchers and project management professionals. The handbook consists of two volumes. Volume 1 is devoted to single-modal and multi-modal project scheduling. Volume 2 presents multi-project problems, project scheduling under uncertainty and vagueness, managerial approaches and a separate part on applications, case studies and information systems.




Handbook on Project Management and Scheduling Vol. 2


Book Description

Due to the increasing importance of product differentiation and collapsing product life cycles, a growing number of value-adding activities in the industry and service sector are organized in projects. Projects come in many forms, often taking considerable time and consuming a large amount of resources. The management and scheduling of projects represents a challenging task and project performance may have a considerable impact on an organization's competitiveness. This handbook presents state-of-the-art approaches to project management and scheduling. More than sixty contributions written by leading experts in the field provide an authoritative survey of recent developments. The book serves as a comprehensive reference, both, for researchers and project management professionals. The handbook consists of two volumes. Volume 1 is devoted to single-modal and multi-modal project scheduling. Volume 2 presents multi-project problems, project scheduling under uncertainty and vagueness, managerial approaches and a separate part on applications, case studies and information systems.




Project Scheduling


Book Description

Our objectives in writing Project Scheduling: A Research Handbook are threefold: (1) Provide a unified scheme for classifying the numerous project scheduling problems occurring in practice and studied in the literature; (2) Provide a unified and up-to-date treatment of the state-of-the-art procedures developed for their solution; (3) Alert the reader to various important problems that are still in need of considerable research effort. Project Scheduling: A Research Handbook has been divided into four parts. Part I consists of three chapters on the scope and relevance of project scheduling, on the nature of project scheduling, and finally on the introduction of a unified scheme that will be used in subsequent chapters for the identification and classification of the project scheduling problems studied in this book. Part II focuses on the time analysis of project networks. Part III carries the discussion further into the crucial topic of scheduling under scarce resources. Part IV deals with robust scheduling and stochastic scheduling issues. Numerous tables and figures are used throughout the book to enhance the clarity and effectiveness of the discussions. For the interested and motivated reader, the problems at the end of each chapter should be considered as an integral part of the presentation.




Optimal Inventory Modeling of Systems


Book Description

Most books on inventory theory use the item approach to determine stock levels, ignoring the impact of unit cost, echelon location, and hardware indenture. Optimal Inventory Modeling of Systems is the first book to take the system approach to inventory modeling. The result has been dramatic reductions in the resources to operate many systems - fleets of aircraft, ships, telecommunications networks, electric utilities, and the space station. Although only four chapters and appendices are totally new in this edition, extensive revisions have been made in all chapters, adding numerous worked-out examples. Many new applications have been added including commercial airlines, experience gained during Desert Storm, and adoption of the Windows interface as a standard for personal computer models.




Models & Methods for Project Selection


Book Description

Models & Methods for Project Selection systematically examines in this book treatment the latest work in the field of project selection modeling. The models presented are drawn from mathematical programming, decision theory, and finance. These models are examined in two categorical streams: the management science stream and the financial model stream. The book describes the assumptions and limitations of each model and provides appropriate solution methodologies. Its organization follows three main themes: *Criteria for Choice: Chapters 1-3 investigate the effect of the choice of optimization criteria on the results of the portfolio optimization problem. *Risk and Uncertainty: Chapters 4-7 deal with uncertainty in the project selection problem. *Non-Linearity and Interdependence: These chapters deal with problems of non-linearity and interdependence as they arise in the project selection problem. Chapters 8, 9 and 10 present solution methodologies, which can be used to solve these most general project selection models.




Resource-Constrained Project Scheduling


Book Description

This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.




Traffic Theory


Book Description

“Everything should be made as simple as possible—but not simpler” Albert Einstein Traffic Theory, like all other sciences, aims at understanding and improving a physical phenomenon. The phenomenon addressed by Traffic Theory is, of course, automobile traffic, and the problems associated with it such as traffic congestion. But what causes congestion? Some time in the 1970s, Doxiades coined the term "oikomenopolis" (and "oikistics") to describe the world as man's living space. In Doxiades' terms, persons are associated with a living space around them, which describes the range that they can cover through personal presence. In the days of old, when the movement of people was limited to walking, an individual oikomenopolis did not intersect many others. The automobile changed all that. The term "range of good" was also coined to describe the maximal distance a person can and is willing to go in order to do something useful or buy something. Traffic congestion is caused by the intersection of a multitude of such "ranges of good" of many people exercising their range utilisation at the same time. Urban structures containing desirable structures contribute to this intersection of "ranges of good". xii Preface In a biblical mood, I opened a 1970 paper entitled "Traffic Control -- From Hand Signals to Computers" with the sentence: "In the beginning there was the Ford".




Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice


Book Description

Potential Function Methods For Approximately Solving Linear Programming Problems breaks new ground in linear programming theory. The book draws on the research developments in three broad areas: linear and integer programming, numerical analysis, and the computational architectures which enable speedy, high-level algorithm design. During the last ten years, a new body of research within the field of optimization research has emerged, which seeks to develop good approximation algorithms for classes of linear programming problems. This work both has roots in fundamental areas of mathematical programming and is also framed in the context of the modern theory of algorithms. The result of this work, in which Daniel Bienstock has been very much involved, has been a family of algorithms with solid theoretical foundations and with growing experimental success. This book will examine these algorithms, starting with some of the very earliest examples, and through the latest theoretical and computational developments.




Uncertainty in the Electric Power Industry


Book Description

Around the world, liberalization and privatization in the electricity industry have lead to increased competition among utilities. At the same time, utilities are now exposed more than ever to risk and uncertainties, which they cannot pass on to their customers through price increases as in a regulated environment. Especially electricity-generating companies have to face volatile wholesale prices, fuel price uncertainty, limited long-term hedging possibilities and huge, to a large extent, sunk investments. In this context, Uncertainty in the Electric Power Industry: Methods and Models for Decision Support aims at an integrative view on the decision problems that power companies have to tackle. It systematically examines the uncertainties power companies are facing and develops models to describe them – including an innovative approach combining fundamental and finance models for price modeling. The optimization of generation and trading portfolios under uncertainty is discussed with particular focus on CHP and is linked to risk management. Here the concept of integral earnings at risk is developed to provide a theoretically sound combination of value at risk and profit at risk approaches, adapted to real market structures and market liquidity. Also methods for supporting long-term investment decisions are presented: technology assessment based on experience curves and operation simulation for fuel cells and a real options approach with endogenous electricity prices.