Mathematical Structures in Population Genetics


Book Description

Mathematical methods have been applied successfully to population genet ics for a long time. Even the quite elementary ideas used initially proved amazingly effective. For example, the famous Hardy-Weinberg Law (1908) is basic to many calculations in population genetics. The mathematics in the classical works of Fisher, Haldane and Wright was also not very complicated but was of great help for the theoretical understanding of evolutionary pro cesses. More recently, the methods of mathematical genetics have become more sophisticated. In use are probability theory, stochastic processes, non linear differential and difference equations and nonassociative algebras. First contacts with topology have been established. Now in addition to the tra ditional movement of mathematics for genetics, inspiration is flowing in the opposite direction, yielding mathematics from genetics. The present mono grapll reflects to some degree both patterns but especially the latter one. A pioneer of this synthesis was S. N. Bernstein. He raised-and partially solved- -the problem of characterizing all stationary evolutionary operators, and this work was continued by the author in a series of papers (1971-1979). This problem has not been completely solved, but it appears that only cer tain operators devoid of any biological significance remain to be addressed. The results of these studies appear in chapters 4 and 5. The necessary alge braic preliminaries are described in chapter 3 after some elementary models in chapter 2.




Information Geometry and Population Genetics


Book Description

The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.




Some Mathematical Models from Population Genetics


Book Description

This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.




Genetic Structure and Selection in Subdivided Populations (MPB-40)


Book Description

Various approaches have been developed to evaluate the consequences of spatial structure on evolution in subdivided populations. This book is both a review and new synthesis of several of these approaches, based on the theory of spatial genetic structure. François Rousset examines Sewall Wright's methods of analysis based on F-statistics, effective size, and diffusion approximation; coalescent arguments; William Hamilton's inclusive fitness theory; and approaches rooted in game theory and adaptive dynamics. Setting these in a framework that reveals their common features, he demonstrates how efficient tools developed within one approach can be applied to the others. Rousset not only revisits classical models but also presents new analyses of more recent topics, such as effective size in metapopulations. The book, most of which does not require fluency in advanced mathematics, includes a self-contained exposition of less easily accessible results. It is intended for advanced graduate students and researchers in evolutionary ecology and population genetics, and will also interest applied mathematicians working in probability theory as well as statisticians.




Mathematical Population Genetics 1


Book Description

This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.




From Genetics to Mathematics


Book Description

This volume contains pedagogical and elementary introductions to genetics for mathematicians and physicists as well as to mathematical models and techniques of population dynamics. It also offers a physicist''s perspective on modeling biological processes. Each chapter starts with an overview followed by the recent results obtained by authors. Lectures are self-contained and are devoted to various phenomena such as the evolution of the genetic code and genomes, age-structured populations, demography, sympatric speciation, the Penna model, Lotka-Volterra and other predator-prey models, evolutionary models of ecosystems, extinctions of species, and the origin and development of language. Authors analyze their models from the computational and mathematical points of view.




Human Population Genetics


Book Description

Introductory guide to human population genetics and microevolutionary theory Providing an introduction to mathematical population genetics, Human Population Genetics gives basic background on the mechanisms of human microevolution. This text combines mathematics, biology, and anthropology and is best suited for advanced undergraduate and graduate study. Thorough and accessible, Human Population Genetics presents concepts and methods of population genetics specific to human population study, utilizing uncomplicated mathematics like high school algebra and basic concepts of probability to explain theories central to the field. By describing changes in the frequency of genetic variants from one generation to the next, this book hones in on the mathematical basis of evolutionary theory. Human Population Genetics includes: Helpful formulae for learning ease Graphs and analogies that make basic points and relate the evolutionary process to mathematical ideas Glossary terms marked in boldface within the book the first time they appear In-text citations that act as reference points for further research Exemplary case studies Topics such as Hardy-Weinberg equilibrium, inbreeding, mutation, genetic drift, natural selection, and gene flow Human Population Genetics solidifies knowledge learned in introductory biological anthropology or biology courses and makes it applicable to genetic study. NOTE: errata for the first edition can be found at the author's website: http://employees.oneonta.edu/relethjh/HPG/errata.pdf







Theoretical Aspects of Population Genetics. (MPB-4), Volume 4


Book Description

To show the importance of stochastic processes in the change of gene frequencies, the authors discuss topics ranging from molecular evolution to two-locus problems in terms of diffusion models. Throughout their discussion, they come to grips with one of the most challenging problems in population genetics--the ways in which genetic variability is maintained in Mendelian populations. R.A. Fisher, J.B.S. Haldane, and Sewall Wright, in pioneering works, confirmed the usefulness of mathematical theory in population genetics. The synthesis their work achieved is recognized today as mathematical genetics, that branch of genetics whose aim is to investigate the laws governing the genetic structure of natural populations and, consequently, to clarify the mechanisms of evolution. For the benefit of population geneticists without advanced mathematical training, Professors Kimura and Ohta use verbal description rather than mathematical symbolism wherever practicable. A mathematical appendix is included.




Population Genetics


Book Description

This book aims to make population genetics approachable, logical and easily understood. To achieve these goals, the book’s design emphasizes well explained introductions to key principles and predictions. These are augmented with case studies as well as illustrations along with introductions to classical hypotheses and debates. Pedagogical features in the text include: Interact boxes that guide readers step-by-step through computer simulations using public domain software. Math boxes that fully explain mathematical derivations. Methods boxes that give insight into the use of actual genetic data. Numerous Problem boxes are integrated into the text to reinforce concepts as they are encountered. Dedicated website at www.wiley.com/go/hamiltongenetics This text also offers a highly accessible introduction to coalescent theory, the major conceptual advance in population genetics of the last two decades.