The Mathematics of Various Entertaining Subjects


Book Description

The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects now returns with a brand-new compilation of fascinating problems and solutions in recreational mathematics. This latest volume gathers together the top experts in recreational math and presents a compelling look at board games, card games, dice, toys, computer games, and much more. The book is divided into five parts: puzzles and brainteasers, geometry and topology, graph theory, games of chance, and computational complexity. Readers will discover what origami, roulette wheels, and even the game of Trouble can teach about math. Essays contain new results, and the contributors include short expositions on their topic’s background, providing a framework for understanding the relationship between serious mathematics and recreational games. Mathematical areas explored include combinatorics, logic, graph theory, linear algebra, geometry, topology, computer science, operations research, probability, game theory, and music theory. Investigating an eclectic mix of games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.




Mathematical Subjects


Book Description

Teaching and learning mathematics is a political act in which children, teachers, parents, and policy makers are made visible as subjects. As they learn about mathematics, children are also learning about themselves – who they are, who they might become. We can choose to listen or not to what children have to say about learning mathematics. Such choices constitute us in relations of power. Mathematical know-how is widely regarded as essential not only to the life chances of individuals, but also to the health of communities and the economic well-being of nations. With the globalisation of education in an increasingly market-oriented world, mathematics has received intensified attention in the first decade of the twenty-first century with a shifting emphasis on utilitarian aspects of mathematics. This is reflected in the reconceptualisation of mathematical competence as mathematical literacy, loosely conceived as those ways of thinking, reasoning and working “mathematically” that allow us to engage effectively in everyday situations, in many occupations, and the cut and thrust of world economies as active, empowered and participatory citizens. It is no surprise then that mathematics has become one of the most politically charged subjects in primary school curricula worldwide. We are experiencing an unprecedented proliferation of regional and national strategies to establish benchmarks, raise standards, enhance achievement, close gaps, and leave no child behind in mathematics education. Industries have sprung up around the design, administration and monitoring of standardised assessment to measure and compare children’s mathematical achievement against identified benchmarks and each other.




An Introduction to Abstract Mathematics


Book Description

Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.










History Of The Theory Of Numbers - I


Book Description

A landmark work in the field of mathematics, History of the Theory of Numbers - I traces the development of number theory from ancient civilizations to the early 20th century. Written by mathematician Leonard Eugene Dickson, this book is a comprehensive and accessible introduction to the history of one of the most fundamental branches of mathematics. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Topics in Mathematical Biology


Book Description

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.




The Mathematics of Various Entertaining Subjects


Book Description

The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books exploring puzzles and brainteasers, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects brings together authors from a variety of specialties to present fascinating problems and solutions in recreational mathematics. Contributors to the book show how sophisticated mathematics can help construct mazes that look like famous people, how the analysis of crossword puzzles has much in common with understanding epidemics, and how the theory of electrical circuits is useful in understanding the classic Towers of Hanoi puzzle. The card game SET is related to the theory of error-correcting codes, and simple tic-tac-toe takes on a new life when played on an affine plane. Inspirations for the book's wealth of problems include board games, card tricks, fake coins, flexagons, pencil puzzles, poker, and so much more. Looking at a plethora of eclectic games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.




Proceedings of the Fourth International Congress on Mathematical Education


Book Description

Henry O. Pollak Chairman of the International Program Committee Bell Laboratories Murray Hill, New Jersey, USA The Fourth International Congress on Mathematics Education was held in Berkeley, California, USA, August 10-16, 1980. Previous Congresses were held in Lyons in 1969, Exeter in 1972, and Karlsruhe in 1976. Attendance at Berkeley was about 1800 full and 500 associate members from about 90 countries; at least half of these come from outside of North America. About 450 persons participated in the program either as speakers or as presiders; approximately 40 percent of these came from the U.S. or Canada. There were four plenary addresses; they were delivered by Hans Freudenthal on major problems of mathematics education, Hermina Sinclair on the relationship between the learning of language and of mathematics, Seymour Papert on the computer as carrier of mathematical culture, and Hua Loo-Keng on popularising and applying mathematical methods. Gearge Polya was the honorary president of the Congress; illness prevented his planned attendence but he sent a brief presentation entitled, "Mathematics Improves the Mind". There was a full program of speakers, panelists, debates, miniconferences, and meetings of working and study groups. In addition, 18 major projects from around the world were invited to make presentations, and various groups representing special areas of concern had the opportunity to meet and to plan their future activities.




Mathematical Omnibus


Book Description

The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.