Mathematical Theory of Elasticity of Quasicrystals and Its Applications


Book Description

This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.




Mathematical Theory of Elasticity of Quasicrystals and Its Applications


Book Description

This inter-disciplinary work covering the continuum mechanics of novel materials, condensed matter physics and partial differential equations discusses the mathematical theory of elasticity of quasicrystals (a new condensed matter) and its applications by setting up new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions. The new theories developed here dramatically simplify the solving of complicated elasticity equation systems. Large numbers of complicated equations involving elasticity are reduced to a single or a few partial differential equations of higher order. Systematical and direct methods of mathematical physics and complex variable functions are developed to solve the equations under appropriate boundary value and initial value conditions, and many exact analytical solutions are constructed. The dynamic and non-linear analysis of deformation and fracture of quasicrystals in this volume presents an innovative approach. It gives a clear-cut, strict and systematic mathematical overview of the field. Comprehensive and detailed mathematical derivations guide readers through the work. By combining mathematical calculations and experimental data, theoretical analysis and practical applications, and analytical and numerical studies, readers will gain systematic, comprehensive and in-depth knowledge on continuum mechanics, condensed matter physics and applied mathematics.




Mathematical Theory Of Elasticity And Generalized Dynamics Of Quasicrystals And Its Applications


Book Description

This book gives a detailed description on mathematical theory of elasticity and generalized dynamics of solid quasicrystals and its applications.The Chinese edition of the book Mathematical Theory of Elasticity of Quasicrystals and Its Applications was published by the Beijing Institute of Technology Press in 1999, written by Prof Tian-You Fan. In this English edition of the book, the phonon-phason dynamics, defect dynamics and hydrodynamics of solid quasicrystals are included, so the scope of the book is beyond elasticity. Hence, the title in this edition is changed to Mathematical Theory of Elasticity and Generalized Dynamics of Quasicrystals and Its Applications. This book is the first and only monograph in the scope of quasicrystals since first published in 1999 in China and worldwide. In this edition, the two-dimensional quasicrystals of second kind, soft-matter quasicrystals and photonic bade-gap and application of photonic quasicrystals are added.This book combines the mechanical and physical behavior of quasicrystals and mathematical physics, which may help graduate students and researchers in the fields of new materials, condensed matter physics, applied mathematics and engineering science.




Generalized Dynamics of Soft-Matter Quasicrystals


Book Description

This book highlights the mathematical models and solutions of the generalized dynamics of soft-matter quasicrystals (SMQ) and introduces possible applications of the theory and methods. Based on the theory of quasiperiodic symmetry and symmetry breaking, the book treats the dynamics of individual quasicrystal systems by reducing them to nonlinear partial differential equations and then provides methods for solving the initial-boundary value problems in these equations. The solutions obtained demonstrate the distribution, deformation and motion of SMQ and determine the stress, velocity and displacement fields. The interactions between phonons, phasons and fluid phonons are discussed in some fundamental materials samples. The reader benefits from a detailed comparison of the mathematical solutions for both solid and soft-matter quasicrystals, gaining a deeper understanding of the universal properties of SMQ. The second edition covers the latest research progress on quasicrystals in topics such as thermodynamic stability, three-dimensional problems and solutions, rupture theory, and the photonic band-gap and its applications. These novel chapters make the book an even more useful and comprehensive reference guide for researchers in condensed matter physics, chemistry and materials sciences.







Integral Equations, Boundary Value Problems and Related Problems


Book Description

In this volume, we report new results about various theories and methods of integral equation, boundary value problems for partial differential equations and functional equations, and integral operators including singular integral equations, applications of boundary value problems and integral equations to mechanics and physics, numerical methods of integral equations and boundary value problems, theories and methods for inverse problems of mathematical physics, Clifford analysis and related problems.




Hydrodynamics


Book Description

The phenomena related to the flow of fluids are generally complex, and difficult to quantify. New approaches - considering points of view still not explored - may introduce useful tools in the study of Hydrodynamics and the related transport phenomena. The details of the flows and the properties of the fluids must be considered on a very small scale perspective. Consequently, new concepts and tools are generated to better describe the fluids and their properties. This volume presents conclusions about advanced topics of calculated and observed flows. It contains eighteen chapters, organized in five sections: 1) Mathematical Models in Fluid Mechanics, 2) Biological Applications and Biohydrodynamics, 3) Detailed Experimental Analyses of Fluids and Flows, 4) Radiation-, Electro-, Magnetohydrodynamics, and Magnetorheology, 5) Special Topics on Simulations and Experimental Data. These chapters present new points of view about methods and tools used in Hydrodynamics.




Proceedings of the Third International Conference on Sustainable Civil Engineering and Architecture


Book Description

This book includes articles from the Third International Conference on Sustainable Civil Engineering and Architecture (ICSSEA 2023), held at Da Nang City, Vietnam, on July 19-21, 2023. The conference brings together international experts from both academia and industry to share their knowledge and expertise, facilitate collaboration, and improve cooperation in the field. The book focuses on the most recent developments in sustainable architecture and civil engineering, including offshore structures, structural engineering, building materials, and architecture.




Advanced Technology for Manufacturing Systems and Industry


Book Description

Selected, peer reviewed papers from the 2012 3rd International Conference on Information Technology for Manufacturing Systems (ITMS 2012), September 8-9, 2012, Qingdao, China




Mathematical Theory of Elasticity and Generalized Dynamics of Quasicrystals and Its Applications


Book Description

This book gives a detailed description on mathematical theory of elasticity and generalized dynamics of solid quasicrystals and its applications.The Chinese edition of the book Mathematical Theory of Elasticity of Quasicrystals and Its Applications was published by the Beijing Institute of Technology Press in 1999, written by Prof Tian-You Fan. In this English edition of the book, the phonon-phason dynamics, defect dynamics and hydrodynamics of solid quasicrystals are included, so the scope of the book is beyond elasticity. Hence, the title in this edition is changed to Mathematical Theory of Elasticity and Generalized Dynamics of Quasicrystals and Its Applications. This book is the first and only monograph in the scope of quasicrystals since first published in 1999 in China and worldwide. In this edition, the two-dimensional quasicrystals of second kind, soft-matter quasicrystals and photonic bade-gap and application of photonic quasicrystals are added.This book combines the mechanical and physical behavior of quasicrystals and mathematical physics, which may help graduate students and researchers in the fields of new materials, condensed matter physics, applied mathematics and engineering science.