Mathematical Thinking and Communication


Book Description

Language is deeply involved in learning mathematics as students both communicate and think about mathematical ideas. Because of this, teachers of English learners have particular challenges to overcome. Mathematical Thinking and Communication addresses perhaps the most significant challenge: providing access to mathematics for these students. For all students-and English learners in particular-access means finding effective, authentic ways to make language clear and thinking visible so they can reason more, speak more, and write more in mathematics. Based on extensive research and collaboration with teachers, coaches, and schools, Mark Driscoll, Johannah Nikula, and Jill Neumayer DePiper outline four principles for designing instruction that creates this kind of access: challenging tasks, multimodal representations, development of mathematical communication, and repeated structured practice. Starting from the perspective that English learners are capable of mathematical thinking (even as they are learning to express their ideas verbally), the authors highlight techniques for using gestures, drawings, models, manipulatives, and technology as tools for reasoning and communication. By embedding these visual representations into instruction-and encouraging their regular use-teachers support engagement in problem solving, facilitate mathematical dialogue, and notice evidence of students' thinking that propels them to create more engaging and equitable instruction. Enhanced by an extensive online collection of companion professional development resources, this book highlights classroom-ready strategies and routines for fostering mathematics success in all students and helping them recognize their potential.




Humans-with-Media and the Reorganization of Mathematical Thinking


Book Description

This book offers a new conceptual framework for reflecting on the role of information and communication technology in mathematics education. Discussion focuses on how computers, writing and oral discourse transform education at an epistemological as well as a political level. Building on examples, research and theory, the authors propose that knowledge is not constructed solely by humans, but by collectives of humans and technologies of intelligence.




Reasoning, Communication and Connections in Mathematics


Book Description

This fourth volume in the series of yearbooks by the Association of Mathematics Educators in Singapore entitled Reasoning, Communication and Connections in Mathematics is unique in that it focuses on a single theme in mathematics education. The objective is to encourage teachers and researchers to advance reasoning, communication and connections in mathematics classrooms. Several renowned international researchers in the field have published their work in this volume. The fifteen chapters of the book illustrate evidence-based practices that school teachers and researchers can experiment with in their own classrooms to bring about meaningful learning outcomes. Three major themes: mathematical tasks, classroom discourse, and connectivity within and beyond mathematics, shape the ideas underpinning reasoning, communication and connections in these chapters. The book makes a significant contribution towards mathematical processes essential for learners of mathematics. It is a good resource for mathematics educators and research students.




Thinking as Communicating


Book Description

This book is an attempt to change our thinking about thinking. Anna Sfard undertakes this task convinced that many long-standing, seemingly irresolvable quandaries regarding human development originate in ambiguities of the existing discourses on thinking. Standing on the shoulders of Vygotsky and Wittgenstein, the author defines thinking as a form of communication. The disappearance of the time-honoured thinking-communicating dichotomy is epitomised by Sfard's term, commognition, which combines communication with cognition. The commognitive tenet implies that verbal communication with its distinctive property of recursive self-reference may be the primary source of humans' unique ability to accumulate the complexity of their action from one generation to another. The explanatory power of the commognitive framework and the manner in which it contributes to our understanding of human development is illustrated through commognitive analysis of mathematical discourse accompanied by vignettes from mathematics classrooms.




Mathematical Thinking and Problem Solving


Book Description

In the early 1980s there was virtually no serious communication among the various groups that contribute to mathematics education -- mathematicians, mathematics educators, classroom teachers, and cognitive scientists. Members of these groups came from different traditions, had different perspectives, and rarely gathered in the same place to discuss issues of common interest. Part of the problem was that there was no common ground for the discussions -- given the disparate traditions and perspectives. As one way of addressing this problem, the Sloan Foundation funded two conferences in the mid-1980s, bringing together members of the different communities in a ground clearing effort, designed to establish a base for communication. In those conferences, interdisciplinary teams reviewed major topic areas and put together distillations of what was known about them.* A more recent conference -- upon which this volume is based -- offered a forum in which various people involved in education reform would present their work, and members of the broad communities gathered would comment on it. The focus was primarily on college mathematics, informed by developments in K-12 mathematics. The main issues of the conference were mathematical thinking and problem solving.




Teaching Students to Communicate Mathematically


Book Description

Students learning math are expected to do more than just solve problems; they must also be able to demonstrate their thinking and share their ideas, both orally and in writing. As many classroom teachers have discovered, these can be challenging tasks for students. The good news is, mathematical communication can be taught and mastered. In Teaching Students to Communicate Mathematically, Laney Sammons provides practical assistance for K–8 classroom teachers. Drawing on her vast knowledge and experience as a classroom teacher, she covers the basics of effective mathematical communication and offers specific strategies for teaching students how to speak and write about math. Sammons also presents useful suggestions for helping students incorporate correct vocabulary and appropriate representations when presenting their mathematical ideas. This must-have resource will help you help your students improve their understanding of and their skill and confidence in mathematical communication.




Introduction to Mathematical Thinking


Book Description

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.




The Mathematical Theory of Communication


Book Description

Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.




How Not to Be Wrong


Book Description

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.




Mathematical Reasoning


Book Description

Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom