Mathematical Tools for Shape Analysis and Description


Book Description

This book is a guide for researchers and practitioners to the new frontiers of 3D shape analysis and the complex mathematical tools most methods rely on. The target reader includes students, researchers and professionals with an undergraduate mathematics background, who wish to understand the mathematics behind shape analysis. The authors begin with a quick review of basic concepts in geometry, topology, differential geometry, and proceed to advanced notions of algebraic topology, always keeping an eye on the application of the theory, through examples of shape analysis methods such as 3D segmentation, correspondence, and retrieval. A number of research solutions in the field come from advances in pure and applied mathematics, as well as from the re-reading of classical theories and their adaptation to the discrete setting. In a world where disciplines (fortunately) have blurred boundaries, the authors believe that this guide will help to bridge the distance between theory and practice. Table of Contents: Acknowledgments / Figure Credits / About this Book / 3D Shape Analysis in a Nutshell / Geometry, Topology, and Shape Representation / Differential Geometry and Shape Analysis / Spectral Methods for Shape Analysis / Maps and Distances between Spaces / Algebraic Topology and Topology Invariants / Differential Topology and Shape Analysis / Reeb Graphs / Morse and Morse-Smale Complexes / Topological Persistence / Beyond Geometry and Topology / Resources / Bibliography / Authors' Biographies




3D Shape Analysis


Book Description

An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.




Functional and Shape Data Analysis


Book Description

This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.




Statistical Shape Analysis


Book Description

A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Statistical Shape Analysis: with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis .




Mathematical Basics of Motion and Deformation in Computer Graphics


Book Description

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.




Mathematical Basics of Motion and Deformation in Computer Graphics, Second Edition


Book Description

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.




Heterogeneous Spatial Data


Book Description

New data acquisition techniques are emerging and are providing fast and efficient means for multidimensional spatial data collection. Airborne LIDAR surveys, SAR satellites, stereo-photogrammetry and mobile mapping systems are increasingly used for the digital reconstruction of the environment. All these systems provide extremely high volumes of raw data, often enriched with other sensor data (e.g., beam intensity). Improving methods to process and visually analyze this massive amount of geospatial and user-generated data is crucial to increase the efficiency of organizations and to better manage societal challenges. Within this context, this book proposes an up-to-date view of computational methods and tools for spatio-temporal data fusion, multivariate surface generation, and feature extraction, along with their main applications for surface approximation and rainfall analysis. The book is intended to attract interest from different fields, such as computer vision, computer graphics, geomatics, and remote sensing, working on the common goal of processing 3D data. To this end, it presents and compares methods that process and analyze the massive amount of geospatial data in order to support better management of societal challenges through more timely and better decision making, independent of a specific data modeling paradigm (e.g., 2D vector data, regular grids or 3D point clouds). We also show how current research is developing from the traditional layered approach, adopted by most GIS softwares, to intelligent methods for integrating existing data sets that might contain important information on a geographical area and environmental phenomenon. These services combine traditional map-oriented visualization with fully 3D visual decision support methods and exploit semantics-oriented information (e.g., a-priori knowledge, annotations, segmentations) when processing, merging, and integrating big pre-existing data sets.




Sound Synthesis, Propagation, and Rendering


Book Description

This book gives a broad overview of research on sound simulation driven by a variety of applications. Vibrating objects produce sound, which then propagates through a medium such as air or water before finally being heard by a listener. As a crucial sensory channel, sound plays a vital role in many applications. There is a well-established research community in acoustics that has studied the problems related to sound simulation for six decades. Some of the earliest work was motivated by the design of concert halls, theaters, or lecture rooms with good acoustic characteristics. These problems also have been investigated in other applications, including noise control and sound design for urban planning, building construction, and automotive applications. Moreover, plausible or realistic sound effects can improve the sense of presence in a virtual environment or a game. In these applications, sound can provide important clues such as source directionality and spatial size. The book first surveys various sound synthesis methods, including harmonic synthesis, texture synthesis, spectral analysis, and physics-based synthesis. Next, it provides an overview of sound propagation techniques, including wave-based methods, geometric-based methods, and hybrid methods. The book also summarizes various techniques for sound rendering. Finally, it surveys some recent trends, including the use of machine learning methods to accelerate sound simulation and the use of sound simulation techniques for other applications such as speech recognition, source localization, and computer-aided design.




Cloth Simulation for Computer Graphics


Book Description

Physics-based animation is commonplace in animated feature films and even special effects for live-action movies. Think about a recent movie and there will be some sort of special effects such as explosions or virtual worlds. Cloth simulation is no different and is ubiquitous because most virtual characters (hopefully!) wear some sort of clothing. The focus of this book is physics-based cloth simulation. We start by providing background information and discuss a range of applications. This book provides explanations of multiple cloth simulation techniques. More specifically, we start with the most simple explicitly integrated mass-spring model and gradually work our way up to more complex and commonly used implicitly integrated continuum techniques in state-of-the-art implementations. We give an intuitive explanation of the techniques and give additional information on how to efficiently implement them on a computer. This book discusses explicit and implicit integration schemes for cloth simulation modeled with mass-spring systems. In addition to this simple model, we explain the more advanced continuum-inspired cloth model introduced in the seminal work of Baraff and Witkin [1998]. This method is commonly used in industry. We also explain recent work by Liu et al. [2013] that provides a technique to obtain fast simulations. In addition to these simulation approaches, we discuss how cloth simulations can be art directed for stylized animations based on the work of Wojan et al. [2016]. Controllability is an essential component of a feature animation film production pipeline. We conclude by pointing the reader to more advanced techniques.




An Introduction to Verification of Visualization Techniques


Book Description

As we increase our reliance on computer-generated information, often using it as part of our decision-making process, we must devise tools to assess the correctness of that information. Consider, for example, software embedded on vehicles, used for simulating aircraft performance, or used in medical imaging. In those cases, software correctness is of paramount importance as there's little room for error. Software verification is one of the tools available to attain such goals. Verification is a well known and widely studied subfield of computer science and computational science and the goal is to help us increase confidence in the software implementation by verifying that the software does what it is supposed to do. The goal of this book is to introduce the reader to software verification in the context of visualization. In the same way we became more dependent on commercial software, we have also increased our reliance on visualization software. The reason is simple: visualization is the lens through which users can understand complex data, and as such it must be verified. The explosion in our ability to amass data requires tools not only to store and analyze data, but also to visualize it. This book is comprised of six chapters. After an introduction to the goals of the book, we present a brief description of both worlds of visualization (Chapter 2) and verification (Chapter 3). We then proceed to illustrate the main steps of the verification pipeline for visualization algorithms. We focus on two classic volume visualization techniques, namely, Isosurface Extraction (Chapter 4) and Direct Volume Rendering (Chapter 5). We explain how to verify implementations of those techniques and report the latest results in the field of verification of visualization techniques. The last chapter concludes the book and highlights new research topics for the future.