Handbook of Functionalized Nanomaterials


Book Description

Handbook of Functionalized Nanomaterials: Environmental Health and Safety discusses the reactive properties of FNMs used in a range of applications, and their toxic impact on the environment. Nanomaterials have unique properties that can make them highly reactive. This reactivity can cause unwanted interactions with living cells, an increase in oxidative stress or damage to genetic material - resulting in damage to the environment and local wildlife. This negative impact is often further increased after surface functionalization of nanomaterials with other materials which offer unique properties of their own. To ensure environmental safety and ecological balance, rigorous toxicity testing of functionalized nanomaterials (FNMs) is necessary. This book discusses the toxicological uncertainties of FNMs and the limitations of FNMs in a range of applications. Later chapters propose methods to reliably assess the harm that functionalized nanomaterials can cause to the environment and wildlife, as well covering recent developments in the field of environmental health safety. The book concludes with a discussion on the future prospects of safe functionalized nanomaterials. - Offers a novel, integrated approach, bridging the gap between FNMs and environmental health and safety - Analyses the reactive properties of FNMs and their toxicological potential - Provides an in-depth look at the impact of functionalized nanomaterials on the environment




Future of AI in Biomedicine and Biotechnology


Book Description

The healthcare industry is grappling with numerous challenges, including rising costs, inefficiencies in service delivery, and the need for personalized treatment approaches. Traditional healthcare management and delivery methods must be improved in addressing these issues, leading to a growing demand for innovative solutions. Additionally, the exponential growth of medical data and the complexity of biomedical research and biotechnology presents a daunting challenge in harnessing this data effectively for improved patient care and medical advancements. There is a pressing need for a comprehensive understanding of how artificial intelligence (AI) can be leveraged to tackle these challenges and drive meaningful change in the healthcare sector. Future of AI in Biomedicine and Biotechnology offers a timely and insightful solution to the challenges faced by the healthcare industry. This book is not just a theoretical exploration; it is a practical roadmap for healthcare professionals, researchers, policymakers, and entrepreneurs seeking to navigate the complexities of AI in healthcare. By exploring the intersection of AI with biomedical sciences and biotechnology, this book provides a comprehensive guide to harnessing the power of AI for transformative healthcare innovation.




Functionalized Smart Nanomaterials for Point-of-Care Testing


Book Description

This book highlights the recent advancement in point-of-care testing (POCT) technologies utilizing ‘smart’ nanomaterials for the analysis of biomarkers related to disease, which includes metabolites, enzymes, proteins, nucleic acids, cancer cells and multidrug-resistant pathogen. The POCT refers to medical diagnostic tests performed near the place and time of patient care. During the recent pandemic of COVID-19, many realized the importance of affordable, rapid and accurate POCT devices and their usefulness to combat the spread of the infection. The chapters in this book describe the emergence of ‘smart’ nanomaterials with unique physical and chemical properties being utilized in POCT devices for immobilizing biorecognition elements and labels for signal generation, transduction and amplification. It showcases the applications of these smart nanomaterials and their superiority in developing point-of-care diagnostics devices in a wide range of applied fields like food industry, agriculture sector, water quality assessment, pharmaceuticals and tissue engineering. It also looks into the challenges associated and future direction of research in this promising field. This book caters as reference book for researches from the field of nanobiotechnology and biomedical sciences who are interested in the development of rapid, affordable and accurate POCT devices.




Analytical Applications of Functionalized Magnetic Nanoparticles


Book Description

Magnetic nanoparticles (MNPs) uniquely combine superparamagnetic performance with dimensions that are smaller than or similar size to molecular analytes. Recently, functionalized MNPs are predicted to be a driver for technology and business in this century and hold the promise of high performance materials that will significantly influence all aspects of society. Functionalized MNPs are creating new possibilities for development and innovation in different analytical procedures. Despite their participation in modern development, they are in their infancy and largely unexplored for their practical applications in analysis. This book will provide quality research and practical guidance to analytical scientists, researchers, engineers, quality control experts and laboratory specialists. It covers applications of functionalized MNPs in all stages of analytical procedures. Their incorporation has opened new possibilities for sensing, extraction and detection enabling an increase in sensitivity, magnifying precision and improvement in the detection limit of modern analysis. Toxicity, safety, risk, and legal aspects of functionalized MNPs and the future of analytical chemistry with respect to their use is covered. The book provides an integrated approach for advanced analytical methods and techniques for postgraduates and researchers looking for a reference outlining new and advanced techniques surrounding the applications of functionalized nanomaterials in analytical chemistry.




Food Applications of Nanotechnology


Book Description

Nanotechnology has developed remarkably in recent years and, applied in the food industry, has allowed new industrial advances, the improvement of conventional technologies, and the commercialization of products with new features and functionalities. This progress offers the potential to increase productivity for producers, food security for consumers and economic growth for industries. Food Applications of Nanotechnology presents the main advances of nanotechnology for food industry development. The fundamental concepts of the technique are presented, followed by examples of application in several sectors, such as the enhancement of flavor, color and sensory characteristics; the description of the general concepts of nano-supplements, antimicrobial nanoparticles and other active compounds into food; and developments in the field of packaging, among others. In addition, this work updates readers on the industrial development and the main regulatory aspects for the safety and commercialization of nanofoods. Features: Provides a general overview of nanotechnology in the food industry Discusses the current status of the production and use of nanomaterials as food additives Covers the technological developments in the areas of flavor, color and sensory characteristics of food and food additives Reviews nanosupplements and how they provide improvements in nutritional functionality Explains the antibacterial properties of nanoparticles for food applications This book will serve food scientists and technologists, food engineers, chemists and innovators working in food or ingredient research and new product development. Gustavo Molina is associate professor at the UFVJM (Diamantina—Brazil) in Food Engineering and head of the Laboratory of Food Biotechnology and conducts scientific and technical research. His research interests are focused on industrial biotechnology. Dr. Inamuddin is currently working as assistant professor in the chemistry department of Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. He is also a permanent faculty member (assistant professor) at the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, and electrochemistry and, more specifically, renewable energy and environment. Prof. Abdullah M. Asiri is professor of organic photochemistry and has been the head of the chemistry department at King Abdulaziz University since October 2009, as well as the director of the Center of Excellence for Advanced Materials Research (CEAMR) since 2010. His research interest covers color chemistry, synthesis of novel photochromic and thermochromic systems, synthesis of novel coloring matters and dyeing of textiles, materials chemistry, nanochemistry and nanotechnology, polymers, and plastics. Franciele Maria Pelissari graduated in Food Engineering; earned her master’s degree (2009) at the University of Londrina (UEL), Londrina, Brazil; and her PhD (2013) at the University of Campinas (Unicamp), Campinas, Brazil. Since 2013, she has been associate professor at the Institute of Science and Technology program at the Federal University of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil, in Food Engineering, and also full professor in the graduate program in Food Science and Technology.




Nanotechnology for Chemical Engineers


Book Description

The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterials and their applications with chemical engineering rules that educates the readers about nanosclale process design, simulation, modelling and optimization. Briefly, the book takes the readers through a journey from fundamentals to frontiers of engineering of nanoscale processes and informs them about industrial perspective research challenges, opportunities and synergism in chemical Engineering and nanotechnology. Utilising this information the readers can make informed decisions on their career and business.




Mathematics and Physics for Nanotechnology


Book Description

Nanobiotechnology is a new interdisciplinary science with revolutionary perspectives arising from the fact that at nanosize the behaviour and characteristics of matter change with respect to ordinary macroscopic dimensions. Nanotechnology is a new way for producing and getting materials, structures and devices with greatly improved or completely new properties and functionalities. This book provides an introductory overview of the nanobiotechnology world along with a general technical framework about mathematical modelling through which we today study the phenomena of charge transport at the nanometer level. Although it is not a purely mathematics or physics book, it introduces the basic mathematical and physical notions that are important and necessary for theory and applications in nanobiotechnology. Therefore, it can be considered an extended formulary of basic and advanced concepts. It can be the starting point for discussions and insights and can be used for further developments in mathematical–physical modelling linked to the nanobiotechnology world. The book is dedicated to all those who follow their ideas in life and pursue their choices with determination and firmness, in a free and independent way.




Intelligent Nanotechnology


Book Description

Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence provides an overview of advances in science and technology made possible by the convergence of nanotechnology and artificial intelligence (AI). Sections focus on AI-enhanced design, characterization and manufacturing and the use of AI to improve important material properties, with an emphasis on mechanical, photonic, electronic and magnetic properties. Designing benign nanomaterials through the prediction of their impact on biology and the environment is also discussed. Other sections cover the use of AI in the acquisition and analysis of data in experiments and AI technologies that have been enhanced through nanotechnology platforms. Final sections review advances in applications enabled by the merging of nanotechnology and artificial intelligence, including examples from biomedicine, chemistry and automated research. - Includes recent advances on AI-enhanced design, characterization and the manufacturing of nanomaterials - Reviews AI technologies that have been enabled by nanotechnology - Discusses potentially world-changing applications that could ensue as a result of merging these two fields




Water Management


Book Description

Exponential growth in population and improved standards of living demand increasing amount of freshwater and are putting serious strain on the quantity of naturally available freshwater worldwide. Water Management: Social and Technological Perspectives discusses developments in energy-efficient water production, management, wastewater treatment, and social and political aspects related to water management and re-use of treated water. It features a scientific and technological perspective to meeting current and future needs, discussing such technologies as membrane separation using reverse osmosis, the use of nanoparticles for adsorption of impurities from wastewater, and the use of thermal methods for desalination. The book also discusses increasing the efficiency of water usage in industrial, agricultural, and domestic applications to ensure a sustainable system of water production, usage, and recycling. With 30 chapters authored by internationally renowned experts, this work offers readers a comprehensive view of both social and technological outlooks to help solve this global issue.