Mathematically Modelling the Electrical Activity of the Heart


Book Description

This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad ? it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.




Mathematically Modelling The Electrical Activity Of The Heart: From Cell To Body Surface And Back Again


Book Description

This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad — it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.




Modeling and Simulating Cardiac Electrical Activity


Book Description

This book provides a thorough introduction to the topic of mathematical modeling of electrical activity in the heart, from molecular details of ionic channel dynamics to clinically derived patient-specific models. It discusses how cellular ionic models are formulated, introduces commonly used models and explains why there are so many different models available. The chapters cover modeling of the intracellular calcium handling that underlies cellular contraction as well as modeling molecular-level details of cardiac ion channels, and also focus on specialized topics such as cardiomyocyte energetics and signalling pathways. It is an excellent resource for experienced and specialised researchers in the field, but also biological scientists with a limited background in mathematical modelling and computational methods. Part of Biophysical Society-IOP series.




Computing the Electrical Activity in the Heart


Book Description

This book describes mathematical models and numerical techniques for simulating the electrical activity in the heart. It gives an introduction to the most important models, followed by a detailed description of numerical techniques. Particular focus is on efficient numerical methods for large scale simulations on both scalar and parallel computers. The results presented in the book will be of particular interest to researchers in bioengineering and computational biology.




Cardiovascular Computing—Methodologies and Clinical Applications


Book Description

This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.







Computational Modeling and Simulation Examples in Bioengineering


Book Description

A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.




Computational Partial Differential Equations


Book Description

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.




Comprehensive Electrocardiology


Book Description

New edition of the classic complete reference book for cardiologists and trainee cardiologists on the theory and practice of electrocardiography, one of the key modalities used for evaluating cardiology patients and deciding on appropriate management strategies.




Modeling Excitable Tissue


Book Description

This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.