Mathematics Across Contemporary Sciences


Book Description

This work presents invited contributions from the second "International Conference on Mathematics and Statistics" jointly organized by the AUS (American University of Sharjah) and the AMS (American Mathematical Society). Addressing several research fields across the mathematical sciences, all of the papers were prepared by faculty members at universities in the Gulf region or prominent international researchers. The current volume is the first of its kind in the UAE and is intended to set new standards of excellence for collaboration and scholarship in the region.




Science and Mathematics


Book Description

This book offers an engaging and comprehensive introduction to scientific theories and the evolution of science and mathematics through the centuries. It discusses the history of scientific thought and ideas and the intricate dynamic between new scientific discoveries, scientists, culture and societies. Through stories and historical accounts, the volume illustrates the human engagement and preoccupation with science and the interpretation of natural phenomena. It highlights key scientific breakthroughs from the ancient to later ages, giving us accounts of the work of ancient Greek and Indian mathematicians and astronomers, as well as of the work of modern scientists like Descartes, Newton, Planck, Mendel and many more. The author also discusses the vast advancements which have been made in the exploration of space, matter and genetics and their relevance in the advancement of the scientific tradition. He provides great insights into the process of scientific experimentation and the relationship between science and mathematics. He also shares amusing anecdotes of scientists and their interactions with the world around them. Detailed and accessible, this book will be of great interest to students and researchers of science, mathematics, the philosophy of science, science and technology studies and history. It will also be useful for general readers who are interested in the history of scientific discoveries and ideas.




Synthetic Philosophy of Contemporary Mathematics


Book Description

A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.




Frontiers In Orthogonal Polynomials And Q-series


Book Description

This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.




Contemporary Mathematics in Context: A Unified Approach, Course 3, Part B, Student Edition


Book Description

A National Science Foundation (NSF) funded high school series for all students Contemporary Mathematics in Context engages students in investigation-based, multi-day lessons organized around big ideas. Important mathematical concepts are developed in relevant contexts by students in ways that make sense to them. Courses 1, along with Courses 2 and 3, comprise a core curriculum that upgrades the mathematics experience for all your students. Course 4 is designed for all college-bound students. Developed with funding from the National Science Foundation, each course is the product of a four-year research, development, and evaluation process involving thousands of students in schools across the country.




Reflections on the Foundations of Mathematics


Book Description

This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.




Leibniz and the Structure of Sciences


Book Description

The book offers a collection of essays on various aspects of Leibniz’s scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz’s logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz’s scientific works through modern mathematical tools, and compare Leibniz’s results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz’s work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz’s researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.







A Mathematician's Journeys


Book Description

This book explores facets of Otto Neugebauer's career, his impact on the history and practice of mathematics, and the ways in which his legacy has been preserved or transformed in recent decades, looking ahead to the directions in which the study of the history of science will head in the twenty-first century. Neugebauer, more than any other scholar of recent times, shaped the way we perceive premodern science. Through his scholarship and influence on students and collaborators, he inculcated both an approach to historical research on ancient and medieval mathematics and astronomy through precise mathematical and philological study of texts, and a vision of these sciences as systems of knowledge and method that spread outward from the ancient Near Eastern civilizations, crossing cultural boundaries and circulating over a tremendous geographical expanse of the Old World from the Atlantic to India.




Advances in Applied Mathematics, Modeling, and Computational Science


Book Description

The volume presents a selection of in-depth studies and state-of-the-art surveys of several challenging topics that are at the forefront of modern applied mathematics, mathematical modeling, and computational science. These three areas represent the foundation upon which the methodology of mathematical modeling and computational experiment is built as a ubiquitous tool in all areas of mathematical applications. This book covers both fundamental and applied research, ranging from studies of elliptic curves over finite fields with their applications to cryptography, to dynamic blocking problems, to random matrix theory with its innovative applications. The book provides the reader with state-of-the-art achievements in the development and application of new theories at the interface of applied mathematics, modeling, and computational science. This book aims at fostering interdisciplinary collaborations required to meet the modern challenges of applied mathematics, modeling, and computational science. At the same time, the contributions combine rigorous mathematical and computational procedures and examples from applications ranging from engineering to life sciences, providing a rich ground for graduate student projects.