Book Description
A thorough account of the philosophy of mathematics. In a cogent account the author argues against the view that mathematics is solely logic.
Author : Mary Tiles
Publisher : Routledge
Page : 210 pages
File Size : 39,55 MB
Release : 2013-01-11
Category : Philosophy
ISBN : 1134967713
A thorough account of the philosophy of mathematics. In a cogent account the author argues against the view that mathematics is solely logic.
Author : Theodore A. Sundstrom
Publisher : Prentice Hall
Page : 0 pages
File Size : 38,69 MB
Release : 2007
Category : Logic, Symbolic and mathematical
ISBN : 9780131877184
Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom
Author : Mary Tiles
Publisher : Routledge
Page : 198 pages
File Size : 20,40 MB
Release : 2013-01-11
Category : Philosophy
ISBN : 1134967721
A thorough account of the philosophy of mathematics. In a cogent account the author argues against the view that mathematics is solely logic.
Author : Lyn D. English
Publisher : Routledge
Page : 393 pages
File Size : 18,21 MB
Release : 2013-04-03
Category : Education
ISBN : 1136491074
How we reason with mathematical ideas continues to be a fascinating and challenging topic of research--particularly with the rapid and diverse developments in the field of cognitive science that have taken place in recent years. Because it draws on multiple disciplines, including psychology, philosophy, computer science, linguistics, and anthropology, cognitive science provides rich scope for addressing issues that are at the core of mathematical learning. Drawing upon the interdisciplinary nature of cognitive science, this book presents a broadened perspective on mathematics and mathematical reasoning. It represents a move away from the traditional notion of reasoning as "abstract" and "disembodied", to the contemporary view that it is "embodied" and "imaginative." From this perspective, mathematical reasoning involves reasoning with structures that emerge from our bodily experiences as we interact with the environment; these structures extend beyond finitary propositional representations. Mathematical reasoning is imaginative in the sense that it utilizes a number of powerful, illuminating devices that structure these concrete experiences and transform them into models for abstract thought. These "thinking tools"--analogy, metaphor, metonymy, and imagery--play an important role in mathematical reasoning, as the chapters in this book demonstrate, yet their potential for enhancing learning in the domain has received little recognition. This book is an attempt to fill this void. Drawing upon backgrounds in mathematics education, educational psychology, philosophy, linguistics, and cognitive science, the chapter authors provide a rich and comprehensive analysis of mathematical reasoning. New and exciting perspectives are presented on the nature of mathematics (e.g., "mind-based mathematics"), on the array of powerful cognitive tools for reasoning (e.g., "analogy and metaphor"), and on the different ways these tools can facilitate mathematical reasoning. Examples are drawn from the reasoning of the preschool child to that of the adult learner.
Author : Frank Markham Brown
Publisher : Courier Corporation
Page : 308 pages
File Size : 38,71 MB
Release : 2012-02-10
Category : Mathematics
ISBN : 0486164594
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
Author : W.S. Anglin
Publisher : Springer Science & Business Media
Page : 253 pages
File Size : 29,97 MB
Release : 2012-12-06
Category : Science
ISBN : 1461208750
This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu dents are given a choice between mathematical assignments, and more his torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe maticians, giving more mathematically talented students a greater oppor tunity to learn the history and philosophy by way of problem solving.
Author : Noson S. Yanofsky
Publisher : MIT Press
Page : 419 pages
File Size : 17,7 MB
Release : 2016-11-04
Category : Science
ISBN : 026252984X
This exploration of the scientific limits of knowledge challenges our deep-seated beliefs about our universe, our rationality, and ourselves. “A must-read for anyone studying information science.” —Publishers Weekly, starred review Many books explain what is known about the universe. This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own intuitions about the world—including our ideas about space, time, and motion, and the complex relationship between the knower and the known. Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve: • perfectly formed English sentences that make no sense • different levels of infinity • the bizarre world of the quantum • the relevance of relativity theory • the causes of chaos theory • math problems that cannot be solved by normal means • statements that are true but cannot be proven Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
Author : Reuben Hersh
Publisher : Oxford University Press
Page : 368 pages
File Size : 15,39 MB
Release : 1997-08-21
Category : Mathematics
ISBN : 0198027362
Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.
Author : Peter J. Eccles
Publisher : Cambridge University Press
Page : 364 pages
File Size : 41,76 MB
Release : 2013-06-26
Category : Mathematics
ISBN : 1139632566
This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.
Author : Jordan Ellenberg
Publisher : Penguin Press
Page : 480 pages
File Size : 15,11 MB
Release : 2014-05-29
Category : Mathematics
ISBN : 1594205221
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.