Mathematics Applied to Engineering


Book Description

Mathematics Applied in Engineering presents a wide array of applied mathematical techniques for an equally wide range of engineering applications, covering areas such as acoustics, system engineering, optimization, mechanical engineering, and reliability engineering. Mathematics acts as a foundation for new advances, as engineering evolves and develops. This book will be of great interest to postgraduate and senior undergraduate students, and researchers, in engineering and mathematics, as well as to engineers, policy makers, and scientists involved in the application of mathematics in engineering. - Covers many mathematical techniques for robotics, computer science, mechanical engineering, HCI and machinability - Describes different algorithms - Explains different modeling techniques and simulations




Applied Mathematics


Book Description

Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and content of the book covers C.S.E. and 'O' level G.C.E. examinations in Applied Mathematics and Mechanics as well as the relevant parts of the syllabuses for Physics and General Science courses related to Engineering, Building, and Agriculture. The book is also written for the home study reader who is interested in widening his mathematical appreciation or simply reviving forgotten ideas. The author hopes that the style of presentation will be found sufficiently attractive to recapture those who may at one time have lost interest.




Partial Differential Equations in Action


Book Description

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.




Mathematics Applied to Engineering in Action


Book Description

Mathematics Applied to Engineering in Action: Advanced Theories, Methods, and Models focuses on material relevant to solving the kinds of mathematical problems regularly confronted by engineers. This new volume explains how an engineer should properly define the physical and mathematical problem statements, choose the computational approach, and solve the problem by a proven reliable approach. It presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme. The book aims to apply advanced mathematics using real-world problems to illustrate mathematical ideas. This approach emphasizes the relevance of mathematics to engineering problems, helps to motivate the reader, and gives examples of mathematical concepts in a context familiar to the research students. The volume is intended for professors and instructors, scientific researchers, students, and industry professionals. It will help readers to choose the most appropriate mathematical modeling method to solve engineering problems.




Applied Mathematics In Hydraulic Engineering: An Introduction To Nonlinear Differential Equations


Book Description

Applied Mathematics in Hydraulic Engineering is an excellent teaching guide and reference to treating nonlinear mathematical problems in hydraulic, hydrologic and coastal engineering. Undergraduates studying civil and coastal engineering, as well as analysis and differential equations, are started off applying calculus to the treatment of nonlinear partial differential equations, before given the chance to practice real-life problems related to the fields. This textbook is not only a good source of teaching materials for teachers or instructors, but is also useful as a comprehensive resource of mathematical tools to researchers.




Linear Algebra in Action


Book Description

This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.




Mathematical Analysis in Engineering


Book Description

A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.




Analysis for Applied Mathematics


Book Description

This well-written book contains the analytical tools, concepts, and viewpoints needed for modern applied mathematics. It treats various practical methods for solving problems such as differential equations, boundary value problems, and integral equations. Pragmatic approaches to difficult equations are presented, including the Galerkin method, the method of iteration, Newton’s method, projection techniques, and homotopy methods.




Mathematics Applied to Deterministic Problems in the Natural Sciences


Book Description

This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.




Applied Mathematics


Book Description

Praise for the Third Edition “Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference.” —MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and natural sciences. The Fourth Edition covers both standard and modern topics, including scaling and dimensional analysis; regular and singular perturbation; calculus of variations; Green’s functions and integral equations; nonlinear wave propagation; and stability and bifurcation. The book provides extended coverage of mathematical biology, including biochemical kinetics, epidemiology, viral dynamics, and parasitic disease. In addition, the new edition features: Expanded coverage on orthogonality, boundary value problems, and distributions, all of which are motivated by solvability and eigenvalue problems in elementary linear algebra Additional MATLAB® applications for computer algebra system calculations Over 300 exercises and 100 illustrations that demonstrate important concepts New examples of dimensional analysis and scaling along with new tables of dimensions and units for easy reference Review material, theory, and examples of ordinary differential equations New material on applications to quantum mechanics, chemical kinetics, and modeling diseases and viruses Written at an accessible level for readers in a wide range of scientific fields, Applied Mathematics, Fourth Edition is an ideal text for introducing modern and advanced techniques of applied mathematics to upper-undergraduate and graduate-level students in mathematics, science, and engineering. The book is also a valuable reference for engineers and scientists in government and industry.