Mathematics as Problem Solving


Book Description

Various elementary techniques for solving problems in algebra, geometry, and combinatorics are explored in this second edition of Mathematics as Problem Solving. Each new chapter builds on the previous one, allowing the reader to uncover new methods for using logic to solve problems. Topics are presented in self-contained chapters, with classical solutions as well as Soifer's own discoveries. With roughly 200 different problems, the reader is challenged to approach problems from different angles. Mathematics as Problem Solving is aimed at students from high school through undergraduate levels and beyond, educators, and the general reader interested in the methods of mathematical problem solving.




Solving Mathematical Problems


Book Description

Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.




Problem-Solving Strategies


Book Description

A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.




Problem-Solving Through Problems


Book Description

This is a practical anthology of some of the best elementary problems in different branches of mathematics. Arranged by subject, the problems highlight the most common problem-solving techniques encountered in undergraduate mathematics. This book teaches the important principles and broad strategies for coping with the experience of solving problems. It has been found very helpful for students preparing for the Putnam exam.




Mathematical Problem Solving


Book Description

This book is addressed to people with research interests in the nature of mathematical thinking at any level, topeople with an interest in "higher-order thinking skills" in any domain, and to all mathematics teachers. The focal point of the book is a framework for the analysis of complex problem-solving behavior. That framework is presented in Part One, which consists of Chapters 1 through 5. It describes four qualitatively different aspects of complex intellectual activity: cognitive resources, the body of facts and procedures at one's disposal; heuristics, "rules of thumb" for making progress in difficult situations; control, having to do with the efficiency with which individuals utilize the knowledge at their disposal; and belief systems, one's perspectives regarding the nature of a discipline and how one goes about working in it. Part Two of the book, consisting of Chapters 6 through 10, presents a series of empirical studies that flesh out the analytical framework. These studies document the ways that competent problem solvers make the most of the knowledge at their disposal. They include observations of students, indicating some typical roadblocks to success. Data taken from students before and after a series of intensive problem-solving courses document the kinds of learning that can result from carefully designed instruction. Finally, observations made in typical high school classrooms serve to indicate some of the sources of students' (often counterproductive) mathematical behavior.




Mathematical Problem Solving


Book Description

This book contributes to the field of mathematical problem solving by exploring current themes, trends and research perspectives. It does so by addressing five broad and related dimensions: problem solving heuristics, problem solving and technology, inquiry and problem posing in mathematics education, assessment of and through problem solving, and the problem solving environment. Mathematical problem solving has long been recognized as an important aspect of mathematics, teaching mathematics, and learning mathematics. It has influenced mathematics curricula around the world, with calls for the teaching of problem solving as well as the teaching of mathematics through problem solving. And as such, it has been of interest to mathematics education researchers for as long as the field has existed. Research in this area has generally aimed at understanding and relating the processes involved in solving problems to students’ development of mathematical knowledge and problem solving skills. The accumulated knowledge and field developments have included conceptual frameworks for characterizing learners’ success in problem solving activities, cognitive, metacognitive, social and affective analysis, curriculum proposals, and ways to promote problem solving approaches.




Problem Solving Through Recreational Mathematics


Book Description

Fascinating approach to mathematical teaching stresses use of recreational problems, puzzles, and games to teach critical thinking. Logic, number and graph theory, games of strategy, much more. Includes answers to selected problems. Free solutions manual available for download at the Dover website.




Teaching Mathematics Through Problem-Solving


Book Description

This engaging book offers an in-depth introduction to teaching mathematics through problem-solving, providing lessons and techniques that can be used in classrooms for both primary and lower secondary grades. Based on the innovative and successful Japanese approaches of Teaching Through Problem-solving (TTP) and Collaborative Lesson Research (CLR), renowned mathematics education scholar Akihiko Takahashi demonstrates how these teaching methods can be successfully adapted in schools outside of Japan. TTP encourages students to try and solve a problem independently, rather than relying on the format of lectures and walkthroughs provided in classrooms across the world. Teaching Mathematics Through Problem-Solving gives educators the tools to restructure their lesson and curriculum design to make creative and adaptive problem-solving the main way students learn new procedures. Takahashi showcases TTP lessons for elementary and secondary classrooms, showing how teachers can create their own TTP lessons and units using techniques adapted from Japanese educators through CLR. Examples are discussed in relation to the Common Core State Standards, though the methods and lessons offered can be used in any country. Teaching Mathematics Through Problem-Solving offers an innovative new approach to teaching mathematics written by a leading expert in Japanese mathematics education, suitable for pre-service and in-service primary and secondary math educators.




The Art and Craft of Problem Solving


Book Description

This text on mathematical problem solving provides a comprehensive outline of "problemsolving-ology," concentrating on strategy and tactics. It discusses a number of standard mathematical subjects such as combinatorics and calculus from a problem solver's perspective.




Problem Solving in Mathematics Education


Book Description

This survey book reviews four interrelated areas: (i) the relevance of heuristics in problem-solving approaches – why they are important and what research tells us about their use; (ii) the need to characterize and foster creative problem-solving approaches – what type of heuristics helps learners devise and practice creative solutions; (iii) the importance that learners formulate and pursue their own problems; and iv) the role played by the use of both multiple-purpose and ad hoc mathematical action types of technologies in problem-solving contexts – what ways of reasoning learners construct when they rely on the use of digital technologies, and how technology and technology approaches can be reconciled.