Mathematics for Earth Science and Geography


Book Description

This undergraduate textbook presents a unique comprehensive overview on Mathematics in Earth Sciences and Geography. It deals with fundamental theoretical and applied mathematics, needed by bachelor students in a wide range of subjects. The book is illustrated with many examples and over a hundred practical exercises, with solutions included in the book. In addition, this textbook highlights numerical resources by using two free software packages (R and Xcas) and introducing their use.




Mathematical Methods in the Earth and Environmental Sciences


Book Description

An accessible introduction to the mathematical methods essential for understanding processes in the Earth and environmental sciences.




Encyclopedia of Mathematical Geosciences


Book Description

The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.




MATLAB® Recipes for Earth Sciences


Book Description

Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.




Handbook of Mathematical Geosciences


Book Description

This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.




Introductory Mathematics for Earth Scientists


Book Description

Any quantitative work in earth sciences requires mathematical analysis. Many mathematical methods are essential to the modeling and analysis of the geological, geophysical, and environmental processes widely studied in earth sciences. This book provides an introduction to the fundamental mathematics that all earth scientists need. Assuming nor more than a standard secondary school level as its starting point, the book is self-contained and provides an essential toolkit of basic mathematics for earth scientists. The topics of earth sciences are vast and multidisciplinary, and consequently the mathematical tools required by its students are diverse and complex. Introductory Mathematics for Earth Scientists strikes a fine balance between coverage and detail. Topics have been selected to provide a concise but comprehensive introductory coverage of all the major and popular mathematical methods. The book offers a 'theorem-free' approach with an emphasis on practicality. With dozens of step-by-step worked examples, the book is especially suitable for non-mathematicians and geoscientists. The topics include binomial theorem, index notations, polynomials, sequences and series, trigonometry, spherical trigonometry, complex numbers, vectors and matrices, ordinary differential equations, partial differential equations, Fourier transforms, numerical methods, and geostatistics. Introductory Mathematics for Earth Scientists introduces a wide range of fundamental and widely-used, mathematical methods. This book is ideal for both undergraduate students and postgraduate students. Additionally, it is a helpful reference for more advanced scientists.




The 23rd Cycle


Book Description

The 23rd Cycle includes a history of the record of auroral sightings, accounts of blackouts from the nineteenth and twentieth centuries, industries sensitive to solar storms, and radiation and health issues."--Jacket.




Multiple-point Geostatistics


Book Description

This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.




Mathematics of Planet Earth


Book Description

Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics.This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples.The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.




Rediscovering Geography


Book Description

As political, economic, and environmental issues increasingly spread across the globe, the science of geography is being rediscovered by scientists, policymakers, and educators alike. Geography has been made a core subject in U.S. schools, and scientists from a variety of disciplines are using analytical tools originally developed by geographers. Rediscovering Geography presents a broad overview of geography's renewed importance in a changing world. Through discussions and highlighted case studies, this book illustrates geography's impact on international trade, environmental change, population growth, information infrastructure, the condition of cities, the spread of AIDS, and much more. The committee examines some of the more significant tools for data collection, storage, analysis, and display, with examples of major contributions made by geographers. Rediscovering Geography provides a blueprint for the future of the discipline, recommending how to strengthen its intellectual and institutional foundation and meet the demand for geographic expertise among professionals and the public.