Basic Mathematics for Electronics


Book Description

Basic Mathematics for Electronics combines electronictheory and applications with the mathematical principles necessary to solve a wide range of circuit problems. Coverage of mathematical topics reflects current trends in electronics. A complete chapter is devoted to Karnaugh mapping to help students cope with the greater complexity of modern digital circuit devices. Marginal notes indicate areas of special interest in computers and computer usage.To facilitate learning, material is presented in a block form that employs a two-color, single-column format. After the initial chapters, sections may be studied ndependently. As each new topic is introduced, illustrative examples and numerous problems, graded from easy to difficult, are given for reinforcement. Answers to odd-numbered problems are provided in the back of the book. The Answers to Even-Numbered Problems booklet contains answers and selected worked-out solutions. A computerized Test Bank and Transparency Masters are also available with this edition.




Mathematics for Electronics and Computers


Book Description

This book provides a complete math course for those who want to learn technology. The book reinforces all math topics with extensive electronic and computer applications to show readers the value of math as a tool. (Midwest).




Mathematics for Electrical Engineering and Computing


Book Description

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering







Mathematics for Computer Science


Book Description

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.




Basic Electronics Math


Book Description

Most students entering an electronics technician program have an understanding of mathematics. Basic Electronics Math provides is a practical application of these basics to electronic theory and circuits. The first half of Basic Electronics Math provides a refresher of mathematical concepts. These chapters can be taught separately from or in combination with the rest of the book, as needed by the students. The second half of Basic Electronics Math covers applications to electronics. Basic concepts of electronics math Numerous problems and examples Uses real-world applications




Discrete Mathematics Using a Computer


Book Description

Computer science abounds with applications of discrete mathematics, yet s- dents of computer science often study discrete mathematics in the context of purely mathematical applications. They have to ?gure out for themselves how to apply the ideas of discrete mathematics to computing problems. It is not easy. Most students fail to experience broad success in this enterprise, which is not surprising, since many of the most important advances in science and engineeringhavebeen, precisely, applicationsofmathematicstospeci?cscience and engineering problems. Tobesure,mostdiscretemathtextbooksincorporatesomeaspectsapplying discrete math to computing, but it usually takes the form of asking students to write programs to compute the number of three-ball combinations there are in a set of ten balls or, at best, to implement a graph algorithm. Few texts ask students to use mathematical logic to analyze properties of digital circuits or computer programs or to apply the set theoretic model of functions to understand higher-order operations. A major aim of this text is to integrate, tightly, the study of discrete mathematics with the study of central problems of computer science.




Mathematics for Computer Graphics


Book Description

This is a concise and informal introductory book on the mathematical concepts that underpin computer graphics. The author, John Vince, makes the concepts easy to understand, enabling non-experts to come to terms with computer animation work. The book complements the author's other works and is written in the same accessible and easy-to-read style. It is also a useful reference book for programmers working in the field of computer graphics, virtual reality, computer animation, as well as students on digital media courses, and even mathematics courses.




Advanced Mathematics for Electrical and Computer Engineers


Book Description

Advanced Mathematics for Electrical and Computer Engineers, by Randall L. Musselman, applies comprehensive math topics specifically to electrical and computer-engineering applications. These topics include:?Discrete mathothe mathematics of computation?Probability and random variablesofundamental to communication theory and solid-state devices?Ordinary differential equationsothe mathematics of circuit analysis?Laplace transforms othat makes the math of circuit analysis much more manageable?Fourier series and Fourier transformsothe mathematical backbone of signal analysis?Partial differential equationsothe math description of waves and boundary value problems?Linear algebraothe mathematical language of modern robotics?Vector calculusofundamental to electromagnetism and radio-wave propagationThis book explores each of these topics their own chapters, employing electrical and computer-engineering examples as applications.




Logic for Mathematics and Computer Science


Book Description

This text is intended for one semester courses in Logic, it can also be applied to a two semester course, in either Computer Science or Mathematics Departments. Unlike other texts on mathematical logic that are either too advanced, too sparse in examples or exercises, too traditional in coverage, or too philosophical in approach, this text provides an elementary "hands-on" presentation of important mathematical logic topics, new and old, that is readily accessible and relevant to all students of the mathematical sciences -- not just those in traditional pure mathematics.