Mathematics for the General Reader


Book Description

"A first-class mathematician's lucid, unhurried account of the science of numbers from arithmetic through the calculus." — James R. Newman, The World of Mathematics. This highly accessible introduction to mathematics is geared toward readers seeking a firm grasp of the essentials of mathematical theory and practice. The treatment also offers a concise outline of mathematical history and a clearer notion of why mathematicians do what they do. Author E. C. Titchmarsh, who served for many years as Savilian Professor of Geometry at Oxford University, begins with counting and the fundamentals of arithmetic. He guides readers through the complexities of algebra, fractions, geometry, irrational numbers, logarithms, infinite series, complex numbers, quadratic equations, trigonometry, functions, and integral and differential calculus. Titchmarsh's graceful, fluid style helps make complicated topics easier to grasp, and his inclusion of numerous examples will prove especially helpful to readers with little or no background in mathematics.




Concepts of Modern Mathematics


Book Description

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.




The Wonder Book of Geometry


Book Description

How can we be sure that Pythagoras's theorem is really true? Why is the 'angle in a semicircle' always 90 degrees? And how can tangents help determine the speed of a bullet? David Acheson takes the reader on a highly illustrated tour through the history of geometry, from ancient Greece to the present day. He emphasizes throughout elegant deduction and practical applications, and argues that geometry can offer the quickest route to the whole spirit of mathematics at its best. Along the way, we encounter the quirky and the unexpected, meet the great personalities involved, and uncover some of the loveliest surprises in mathematics.




Mathematics Form and Function


Book Description

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.




General Relativity for Mathematicians


Book Description

This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).




Easy Mathematics; Or, Arithmetic and Algebra for General Readers


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Makers of Mathematics


Book Description

Each chapter of this portrait of the evolution of mathematics examines the work of an individual — Archimedes, Descartes, Fermat, Pascal, Newton, Einstein, and others — to explore the mathematics of his era. Rather than a series of biographical profiles, readers encounter an accessible chronology of pioneering developments in mathematics. 1989 edition.




Einstein's Theory


Book Description

This book provides an introduction to the theory of relativity and the mathematics used in its processes. Three elements of the book make it stand apart from previously published books on the theory of relativity. First, the book starts at a lower mathematical level than standard books with tensor calculus of sufficient maturity to make it possible to give detailed calculations of relativistic predictions of practical experiments. Self-contained introductions are given, for example vector calculus, differential calculus and integrations. Second, in-between calculations have been included, making it possible for the non-technical reader to follow step-by-step calculations. Thirdly, the conceptual development is gradual and rigorous in order to provide the inexperienced reader with a philosophically satisfying understanding of the theory. The goal of this book is to provide the reader with a sound conceptual understanding of both the special and general theories of relativity, and gain an insight into how the mathematics of the theory can be utilized to calculate relativistic effects.




1089 and All that


Book Description

This excellent book, written by the established author David Acheson, makes mathematics accessible to everyone. Providing an entertaining and witty overview of the subject, the text includes several fascinating puzzles, and is accompanied by numerous illustrations and sketches by world famouscartoonists. This unusual book is one of the most readable explanations of mathematics available.




Basic Matrix Theory


Book Description

This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.