Mathematics - Key Technology for the Future


Book Description

Efficient transfer between science and society is crucial for their future development. The rapid progress of information technology and computer systems offers a large potential and new perspectives for solving complex problems. Mathematical modelling and simulation have become important tools not only in scientific investigations but also in analysing, planning and controlling technological and economic processes. Mathematics, imbedded in an interdisciplinary concept, has become a key technology. The book covers the results of a variety of major projects in industrial mathematics following an initiative of the German Federal Ministry of Education and Research. All projects are collaborations of industrial companies and university-based researchers, and range from automotive industry to computer technology and medical visualisation. In general, the projects presented in this volume prove that new mathematical ideas and methods can be decisive for the solution of industrial and economic problems.




Advances in Mathematics for Industry 4.0


Book Description

Advances in Mathematics for Industry 4.0 examines key tools, techniques, strategies, and methods in engineering applications. By covering the latest knowledge in technology for engineering design and manufacture, chapters provide systematic and comprehensive coverage of key drivers in rapid economic development. Written by leading industry experts, chapter authors explore managing big data in processing information and helping in decision-making, including mathematical and optimization techniques for dealing with large amounts of data in short periods. - Focuses on recent research in mathematics applications for Industry 4.0 - Provides insights on international and transnational scales - Identifies mathematics knowledge gaps for Industry 4.0 - Describes fruitful areas for further research in industrial mathematics, including forthcoming international studies and research




Efficient Transient Noise Analysis in Circuit Simulation


Book Description

The current technological progress in microelectronics is driven by the desire to decrease feature sizes, increase frequencies and the need for low supply voltages. Amongst other effects the signal-to-noise ratio decreases and the transient noise analysis becomes necessary in the simulation of electronic circuits. Taking the inner electronic noise into account by means of Gaussian white noise currents, mathematical modelling leads to stochastic differential algebraic equations (SDAEs) with a large number of small noise sources. The simulation of such systems requires an efficient numerical time integration by mean-square convergent numerical methods. In this thesis, adaptive linear multi-step Maruyama schemes to solve stochastic differential equations (SDEs) and SDAEs are developed. A reliable local error estimate for systems with small noise is provided and a strategy for controlling the step-size and the number of solution paths simultaneously in one approximation is presented. Numerical experiments on industrial relevant real-life applications illustrate the theoretical findings.




German Success Stories in Industrial Mathematics


Book Description

This book should illustrate the impact of collaborations between mathematics and industry. It is both an initiative of and coordinated by the German Committee for Mathematical Modeling, Simulation and Optimization (KoMSO). This publication aims at comparing the state of the art at the intersection of mathematics and industry, as well as the demands for future development of science and technology in Germany and beyond. Each contribution addresses the importance of mathematics in innovation by means of introducing a successful cooperation with an industrial partner in order to display the wide range of industrial sectors where the use of mathematics is the crucial factor for success, but also show the variety of mathematical areas involved in these activities. The success stories introduced in this volume will be supplemented by appropriate illustrations. It is the goal of this publication to highlight cooperation between mathematics and industry as a two-way technology and knowledge transfer, providing industry with solutions and mathematics with new research topics and inspiring new methodologies.




Mathematics and Technology


Book Description

This book introduces the student to numerous modern applications of mathematics in technology. The authors write with clarity and present the mathematics in a clear and straightforward way making it an interesting and easy book to read. Numerous exercises at the end of every section provide practice and reinforce the material in the chapter. An engaging quality of this book is that the authors also present the mathematical material in a historical context and not just the practical one. Mathematics and Technology is intended for undergraduate students in mathematics, instructors and high school teachers. Additionally, its lack of calculus centricity as well as a clear indication of the more difficult topics and relatively advanced references make it suitable for any curious individual with a decent command of high school math.




Technology and Mathematics


Book Description

This volume is the first extensive study of the historical and philosophical connections between technology and mathematics. Coverage includes the use of mathematics in ancient as well as modern technology, devices and machines for computation, cryptology, mathematics in technological education, the epistemology of computer-mediated proofs, and the relationship between technological and mathematical computability. The book also examines the work of such historical figures as Gottfried Wilhelm Leibniz, Charles Babbage, Ada Lovelace, and Alan Turing.




Mathematics Education for a New Era


Book Description

Stanford mathematician and NPR Math Guy Keith Devlin explains why, fun aside, video games are the ideal medium to teach middle-school math. Aimed primarily at teachers and education researchers, but also of interest to game developers who want to produce videogames for mathematics education, Mathematics Education for a New Era: Video Games as a Med




Mathematical Reviews


Book Description




Applied Mathematics, Modeling and Computer Simulation


Book Description

Applied mathematics, modelling, and computer simulation are central to many aspects of engineering and computer science, and continue to be of intrinsic importance to the development of modern technologies. This book presents the proceedings of AMMCS 2023, the 3rd International Conference on Applied Mathematics, Modeling and Computer Simulation, held on 12 and 13 August 2023 in Wuhan, China. The conference provided an ideal opportunity for scholars and researchers to communicate important recent developments in their areas of specialization to their colleagues, and to scientists in related disciplines. More than 250 submissions were received for the conference, of which 133 were selected for presentation at the conference and inclusion here after a thorough peer-review process. These range from the theoretical and conceptual to strongly pragmatic papers addressing industrial best practice, and cover topics such as mathematical modeling and application; engineering applications and scientific computations; and the simulation of intelligent systems. The book explores practical experiences and enlightening ideas, and will be of interest to researchers, practitioners, and to all those working in the fields of applied mathematics, modeling and computer simulation.




Uses of Technology in Lower Secondary Mathematics Education


Book Description

This topical survey provides an overview of the current state of the art in technology use in mathematics education, including both practice-oriented experiences and research-based evidence, as seen from an international perspective. Three core themes are discussed: Evidence of effectiveness; Digital assessment; and Communication and collaboration. The survey’s final section offers suggestions for future trends in technology-rich mathematics education and provides a research agenda reflecting those trends. Predicting what lower secondary mathematics education might look like in 2025 with respect to the role of digital tools in curricula, teaching and learning, it examines the question of how teachers can integrate physical and virtual experiences to promote a deeper understanding of mathematics. The issues and findings presented here provide an overview of current research and offer a glimpse into a potential future characterized by the effective integration of technology to support mathematics teaching and learning at the lower secondary level.