Mathematics of Energy and Climate Change


Book Description

The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing planetary problems and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has increased to the point where it influences the global climate, impacts the ability of the planet to feed itself and threatens the stability of these systems. Issues such as climate change, sustainability, man-made disasters, control of diseases and epidemics, management of resources, risk analysis and global integration have come to the fore. Written by specialists in several fields of mathematics and applied sciences, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Mathematics of Energy and Climate Change held in Lisbon, Portugal, in March 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book presents the state of the art in advanced research and ultimate techniques in modeling natural, economical and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences.




Mathematics and Climate


Book Description

Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, and the biological pump. Among the mathematical and statistical techniques presented in the text are dynamical systems and bifurcation theory, Fourier analysis, conservation laws, regression analysis, and extreme value theory. The following features make Mathematics and Climate a valuable teaching resource: issues of current interest in climate science and sustainability are used to introduce the student to the methods of mathematics and statistics; the mathematical sophistication increases as the book progresses and topics can thus be selected according to interest and level of knowledge; each chapter ends with a set of exercises that reinforce or enhance the material presented in the chapter and stimulate critical thinking and communication skills; and the book contains an extensive list of references to the literature, a glossary of terms for the nontechnical reader, and a detailed index.




Mathematical and Physical Fundamentals of Climate Change


Book Description

Mathematical and Physical Fundamentals of Climate Change is the first book to provide an overview of the math and physics necessary for scientists to understand and apply atmospheric and oceanic models to climate research. The book begins with basic mathematics then leads on to specific applications in atmospheric and ocean dynamics, such as fluid dynamics, atmospheric dynamics, oceanic dynamics, and glaciers and sea level rise. Mathematical and Physical Fundamentals of Climate Change provides a solid foundation in math and physics with which to understand global warming, natural climate variations, and climate models. This book informs the future users of climate models and the decision-makers of tomorrow by providing the depth they need. Developed from a course that the authors teach at Beijing Normal University, the material has been extensively class-tested and contains online resources, such as presentation files, lecture notes, solutions to problems and MATLab codes. - Includes MatLab and Fortran programs that allow readers to create their own models - Provides case studies to show how the math is applied to climate research - Online resources include presentation files, lecture notes, and solutions to problems in book for use in classroom or self-study




Climate Change


Book Description

Climate Change is geared toward a variety of students and general readers who seek the real science behind global warming. Exquisitely illustrated, the text introduces the basic science underlying both the natural progress of climate change and the effect of human activity on the deteriorating health of our planet. Noted expert and author Edmond A. Mathez synthesizes the work of leading scholars in climatology and related fields, and he concludes with an extensive chapter on energy production, anchoring this volume in economic and technological realities and suggesting ways to reduce greenhouse-gas emissions. Climate Change opens with the climate system fundamentals: the workings of the atmosphere and ocean, their chemical interactions via the carbon cycle, and the scientific framework for understanding climate change. Mathez then brings the climate of the past to bear on our present predicament, highlighting the importance of paleoclimatology in understanding the current climate system. Subsequent chapters explore the changes already occurring around us and their implications for the future. In a special feature, Jason E. Smerdon, associate research scientist at Lamont-Doherty Earth Observatory of Columbia University, provides an innovative appendix for students.




Mathematics for the Environment


Book Description

Mathematics for the Environment shows how to employ simple mathematical tools, such as arithmetic, to uncover fundamental conflicts between the logic of human civilization and the logic of Nature. These tools can then be used to understand and effectively deal with economic, environmental, and social issues. With elementary mathematics, the book se




How to Avoid a Climate Disaster


Book Description

NEW YORK TIMES BESTSELLER NATIONAL BESTSELLER In this urgent, singularly authoritative book, Bill Gates sets out a wide-ranging, practical--and accessible--plan for how the world can get to zero greenhouse gas emissions in time to avoid an irreversible climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help and guidance of experts in the fields of physics, chemistry, biology, engineering, political science and finance, he has focused on exactly what must be done in order to stop the planet's slide toward certain environmental disaster. In this book, he not only gathers together all the information we need to fully grasp how important it is that we work toward net-zero emissions of greenhouse gases but also details exactly what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. He describes the areas in which technology is already helping to reduce emissions; where and how the current technology can be made to function more effectively; where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete plan for achieving the goal of zero emissions--suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but by following the guidelines he sets out here, it is a goal firmly within our reach.




Applying Critical Mathematics Education


Book Description

This volume showcases new insights, teaching ideas and new and unique ways of applying critical mathematics education, in areas as diverse as climate change, obesity, decolonisation and ethnomathematics.




Climate Mathematics


Book Description

Presents the core mathematics, statistics, and programming skills needed for modern climate science courses, with online teaching materials.




Mathematics of Uncertainty for Coping with World Challenges


Book Description

This book ranks countries with respect to their achievement of the Sustainable Development Goals and their vulnerability to climate change. Human livelihoods, stable economies, health, and high quality of life all depend on a stable climate and earth system, and a diversity of species and ecosystems. Climate change significantly impacts human trafficking, modern slavery, and global hunger. This book examines these global problems using techniques from mathematics of uncertainty. Since accurate data concerning human trafficking and modern slavery is impossible to obtain, mathematics of uncertainty is an ideal discipline to study these problems. The book also considers the interconnection between climate change, world hunger, human trafficking, modern slavery, and the coronavirus. Connectivity properties of fuzzy graphs are used to examine trafficking flow between regions in the world. The book is an excellent reference source for advanced undergraduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.




Introduction to Climate Modelling


Book Description

A three-tier approach is presented: (i) fundamental dynamical concepts of climate processes, (ii) their mathematical formulation based on balance equations, and (iii) the necessary numerical techniques to solve these equations. This book showcases the global energy balance of the climate system and feedback processes that determine the climate sensitivity, initial-boundary value problems, energy transport in the climate system, large-scale ocean circulation and abrupt climate change.