Mathematics of Planet Earth


Book Description

Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics.This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples.The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.




The Dynamics of Biological Systems


Book Description

The book presents nine mini-courses from a summer school, Dynamics of Biological Systems, held at the University of Alberta in 2016, as part of the prestigious seminar series: Séminaire de Mathématiques Supérieures (SMS). It includes new and significant contributions in the field of Dynamical Systems and their applications in Biology, Ecology, and Medicine. The chapters of this book cover a wide range of mathematical methods and biological applications. They - explain the process of mathematical modelling of biological systems with many examples, - introduce advanced methods from dynamical systems theory, - present many examples of the use of mathematical modelling to gain biological insight - discuss innovative methods for the analysis of biological processes, - contain extensive lists of references, which allow interested readers to continue the research on their own. Integrating the theory of dynamical systems with biological modelling, the book will appeal to researchers and graduate students in Applied Mathematics and Life Sciences.




Mathematics of Energy and Climate Change


Book Description

The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing planetary problems and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has increased to the point where it influences the global climate, impacts the ability of the planet to feed itself and threatens the stability of these systems. Issues such as climate change, sustainability, man-made disasters, control of diseases and epidemics, management of resources, risk analysis and global integration have come to the fore. Written by specialists in several fields of mathematics and applied sciences, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Mathematics of Energy and Climate Change held in Lisbon, Portugal, in March 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book presents the state of the art in advanced research and ultimate techniques in modeling natural, economical and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences.




Mathematics and Climate


Book Description

Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, and the biological pump. Among the mathematical and statistical techniques presented in the text are dynamical systems and bifurcation theory, Fourier analysis, conservation laws, regression analysis, and extreme value theory. The following features make Mathematics and Climate a valuable teaching resource: issues of current interest in climate science and sustainability are used to introduce the student to the methods of mathematics and statistics; the mathematical sophistication increases as the book progresses and topics can thus be selected according to interest and level of knowledge; each chapter ends with a set of exercises that reinforce or enhance the material presented in the chapter and stimulate critical thinking and communication skills; and the book contains an extensive list of references to the literature, a glossary of terms for the nontechnical reader, and a detailed index.




Exploring the World of Mathematics


Book Description

Numbers surround us. Just try to make it through a day without using any. It's impossible: telephone numbers, calendars, volume settings, shoe sizes, speed limits, weights, street numbers, microwave timers, TV channels, and the list goes on and on. The many advancements and branches of mathematics were developed through the centuries as people encountered problems and relied upon math to solve them. For instance: What timely invention was tampered with by the Caesars and almost perfected by a pope? Why did ten days vanish in September of 1752? How did Queen Victoria shorten the Sunday sermons at chapel? What important invention caused the world to be divided into time zones? What simple math problem caused the Mars Climate Orbiter to burn up in the Martian atmosphere? What common unit of measurement was originally based on the distance from the equator to the North Pole? Does water always boil at 212? Fahrenheit? What do Da Vinci's Last Supper and the Parthenon have in common? Why is a computer glitch called a "bug"? It's amazing how ten simple digits can be used in an endless number of ways to benefit man. The development of these ten digits and their many uses is the fascinating story you hold in your hands: Exploring the World of Mathematics.




Mathematics for Sustainability


Book Description

Designed for the 21st century classroom, this textbook poses, refines, and analyzes questions of sustainability in a quantitative environment. Building mathematical knowledge in the context of issues relevant to every global citizen today, this text takes an approach that empowers students of all disciplines to understand and reason with quantitative information. Whatever conclusions may be reached on a given topic, this book will prepare the reader to think critically about their own and other people’s arguments and to support them with careful, mathematical reasoning. Topics are grouped in themes of measurement, flow, connectivity, change, risk, and decision-making. Mathematical thinking is at the fore throughout, as students learn to model sustainability on local, regional, and global scales. Exercises emphasize concepts, while projects build and challenge communication skills. With no prerequisites beyond high school algebra, instructors will find this book a rich resource for engaging all majors in the mathematics classroom. From the Foreword No longer will you be just a spectator when people give you quantitative information—you will become an active participant who can engage and contribute new insights to any discussion.[...] There are many math books that will feed you knowledge, but it is rare to see a book like this one that will help you cultivate wisdom.[...] As the authors illustrate, mathematics that pays attention to human considerations can help you look at the world with a new lens, help you frame important questions, and help you make wise decisions. Francis Edward Su, Harvey Mudd College




An Introduction to Mathematical Modeling of Infectious Diseases


Book Description

This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.




Mathematics of Planet Earth


Book Description

It is widely recognized that the degree of development of a science is given by the transition from a mainly descriptive stage to a more quantitative stage. In this transition, qualitative interpretations (conceptual models) are complemented with quantification (numerical models, both, deterministic and stochastic). This has been the main task of mathematical geoscientists during the last forty years - to establish new frontiers and new challenges in the study and understanding of the natural world. Mathematics of Planet Earth comprises the proceedings of the International Association for Mathematical Geosciences Conference (IAMG2013), held in Madrid from September 2-6, 2013. The Conference addresses researchers, professionals and students. The proceedings contain more than 150 original contributions and give a multidisciplinary vision of mathematical geosciences.




Mathematics of Planet Earth


Book Description

Our planet faces many challenges. In 2013, an international partnership of more than 140 scientific societies, research institutes, and organizations focused its attention on these challenges. This project was called Mathematics of Planet Earth and featured English- and French-language blogs, accessible to nonmathematicians, as part of its outreach activities. This book is based on more than 100 of the 270 English-language blog posts and focuses on four major themes: A Planet to Discover; A Planet Supporting Life; A Planet Organized by Humans; and A Planet at Risk. Readers will learn about the challenges that confront the Earth today, and how mathematics and mathematicians contribute to a better understanding of some of these challenges. ?




Mathematics of Planet Earth


Book Description

Since its inception in 2013, Mathematics of Planet Earth (MPE) focuses on mathematical issues arising in the study of our planet. Interested in the impact of human activities on the Earth’s system, this multidisciplinary field considers the planet not only as a physical system, but also as a system supporting life, a system organized by humans, and a system at risk. ​The articles collected in this volume demonstrate the breadth of techniques and tools from mathematics, statistics, and operations research used in MPE. Topics include climate modeling, the spread of infectious diseases, stability of ecosystems, ecosystem services, biodiversity, infrastructure restoration after an extreme event, urban environments, food security, and food safety. Demonstrating the mathematical sciences in action, this book presents real-world challenges for the mathematical sciences, highlighting applications to issues of current concern to society. Arranged into three topical sections (Geo- and Physical Sciences; Life Sciences, Ecology and Evolution; Socio-economics and Infrastructure), thirteen chapters address questions such as how to measure biodiversity, what mathematics can say about the sixth mass extinction, how to optimize the long-term human use of natural capital, and the impact of data on infrastructure management. The book also treats the subject of infectious diseases with new examples and presents an introduction to the mathematics of food systems and food security. Each chapter functions as an introduction that can be studied independently, offering source material for graduate student seminars and self-study. The range of featured research topics provides mathematical scientists with starting points for the study of our planet and the impact of human activities. At the same time, it offers application scientists a plethora of modern mathematical tools and techniques to address the various topics in practice. Including hundreds of references to the vast literature associated with each topic, this book serves as an inspiration for further research.