Mathematics Research for the Beginning Student, Volume 1


Book Description

Mathematics research opportunities for undergraduate students have grown significantly in recent years, but accessible research topics for first- and second-year students with minimal experience beyond high school mathematics are still hard to find. To address this need, this volume provides beginning students with specific research projects and the tools required to tackle them. Most of these projects are accessible to students who have not yet taken Calculus, but students who know some Calculus will find plenty to do here as well. Chapters are self-contained, presenting projects students can pursue, along with essential background material and suggestions for further reading. Suggested prerequisites are noted at the beginning of each chapter. Some topics covered include: games on graphs modeling of biological systems mosaics and virtual knots mathematics for sustainable humanity mathematical epidemiology Mathematics Research for the Beginning Student, Volume 1 will appeal to undergraduate students at two- and four-year colleges who are interested in pursuing mathematics research projects. Faculty members interested in serving as advisors to these students will find ideas and guidance as well. This volume will also be of interest to advanced high school students interested in exploring mathematics research for the first time. A separate volume with research projects for students who have already studied calculus is also available.




A Project-Based Guide to Undergraduate Research in Mathematics


Book Description

This volume provides accessible and self-contained research problems designed for undergraduate student projects, and simultaneously promotes the development of sustainable undergraduate research programs. The chapters in this work span a variety of topical areas of pure and applied mathematics and mathematics education. Each chapter gives a self-contained introduction on a research topic with an emphasis on the specific tools and knowledge needed to create and maintain fruitful research programs for undergraduates. Some of the topics discussed include:• Disease modeling• Tropical curves and surfaces• Numerical semigroups• Mathematics EducationThis volume will primarily appeal to undergraduate students interested in pursuing research projects and faculty members seeking to mentor them. It may also aid students and faculty participating in independent studies and capstone projects.




Mathematics Research for the Beginning Student, Volume 2


Book Description

Mathematics research opportunities for undergraduate students have grown significantly in recent years, but accessible research topics for first- and second-year students are still hard to find. To address this need, this volume provides beginning students who have already had some exposure to calculus with specific research projects and the tools required to tackle them. Chapters are self-contained, presenting projects students can pursue, along with essential background material and suggestions for further reading. In addition to calculus, some of the later chapters require prerequisites such as linear algebra and statistics. Suggested prerequisites are noted at the beginning of each chapter. Some topics covered include: lattice walks in the plane statistical modeling of survival data building blocks and geometry modeling of weather and climate change mathematics of risk and insurance Mathematics Research for the Beginning Student, Volume 2 will appeal to undergraduate students at two- and four-year colleges who are interested in pursuing mathematics research projects. Faculty members interested in serving as advisors to these students will find ideas and guidance as well. This volume will also be of interest to advanced high school students interested in exploring mathematics research for the first time. A separate volume with research projects for students who have not yet studied calculus is also available.




A Mathematician’s Practical Guide to Mentoring Undergraduate Research


Book Description

A Mathematician's Practical Guide to Mentoring Undergraduate Research is a complete how-to manual on starting an undergraduate research program. Readers will find advice on setting appropriate problems, directing student progress, managing group dynamics, obtaining external funding, publishing student results, and a myriad of other relevant issues. The authors have decades of experience and have accumulated knowledge that other mathematicians will find extremely useful.




Mathematical Modeling for Epidemiology and Ecology


Book Description

Mathematical Modeling for Epidemiology and Ecology provides readers with the mathematical tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas and the biological implications, with detailed explanations. The author assumes no mathematics background beyond elementary differential calculus. An introductory chapter on basic principles of mathematical modeling is followed by chapters on empirical modeling and mechanistic modeling. These chapters contain a thorough treatment of key ideas and techniques that are often neglected in mathematics books, such as the Akaike Information Criterion. The second half of the book focuses on analysis of dynamical systems, emphasizing tools to simplify analysis, such as the Routh-Hurwitz conditions and asymptotic analysis. Courses can be focused on either half of the book or thematically chosen material from both halves, such as a course on mathematical epidemiology. The biological content is self-contained and includes many topics in epidemiology and ecology. Some of this material appears in case studies that focus on a single detailed example, and some is based on recent research by the author on vaccination modeling and scenarios from the COVID-19 pandemic. The problem sets feature linked problems where one biological setting appears in multi-step problems that are sorted into the appropriate section, allowing readers to gradually develop complete investigations of topics such as HIV immunology and harvesting of natural resources. Some problems use programs written by the author for Matlab or Octave; these combine with more traditional mathematical exercises to give students a full set of tools for model analysis. Each chapter contains additional case studies in the form of projects with detailed directions. New appendices contain mathematical details on optimization, numerical solution of differential equations, scaling, linearization, and sophisticated use of elementary algebra to simplify problems.




Research in Collegiate Mathematics Education III


Book Description

Volume 3 of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem Solving; Understanding Concepts; and Understanding Proofs.




Productive Math Struggle


Book Description

All students face struggle, and they should—it is how they learn and grow. The teacher’s job is not to remove struggle, but rather to value and harness it, helping students develop good habits of productive struggle. But what’s missing for many educators is an action plan for how to achieve this, especially when it comes to math. This book guides teachers through six specific actions—including valuing, fostering, building, planning, supporting, and reflecting on struggle—to create a game plan for overcoming obstacles by sharing · Actionable steps, activities, and tools for implementation · Instructional tasks representative of each grade level · Real-world examples showcasing classroom photos and student work




Principles of Mathematics Book 1 Teacher Guide


Book Description

Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.




Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning


Book Description

The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?




Directions For Mathematics Research Experience For Undergraduates


Book Description

'The collection transcends the traditional institutional division lines (private, public, large, small, research, undergraduate, etc.) and has something to offer for readers in every realm of academia. The collection challenges the reader to think about how to implement and improve undergraduate research experiences, what such experiences mean to students and faculty, and how such experiences can take a permanent place in the modern preparation of undergraduate mathematics and STEM majors. The book is an open invitation to learn about what has worked and what hasn’t in the inspiration, and has the potential to ignite initiatives with long-lasting benefits to students and faculty nationwide.' See Full ReviewNotices of the AMS“The US National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program in mathematics is now 25 years old, and it is a good time to think about what it has achieved, how it has changed, and where this idea will go next.”This was the premise of the conference held at Mt. Holyoke College during 21-22 June, 2013, and this circle of ideas is brought forward in this volume. The conference brought together diverse points of view, from NSF administrators, leaders of university-wide honors programs, to faculty who had led REUs, recent PhDs who are expected to lead them soon, and students currently in an REU themselves. The conversation was so varied that it justifies a book-length attempt to capture all that was suggested, reported, and said. Among the contributors are Ravi Vakil (Stanford), Haynes Miller (MIT), and Carlos Castillo-Chavez (Arizona, President's Obama Committee on the National Medal of Science 2010-2012).This book should serve not only as a collection of speakers' notes, but also as a source book for anyone interested in teaching mathematics and in the possibility of incorporating research-like experiences in mathematics classes at any level, as well as designing research experiences for undergraduates outside of the classroom.