MATLAB Optimization Functions and Examples


Book Description

MATLAB Optimization Toolbox provides widely used algorithms for and large-scale optimization. These algorithms solve constrained and unconstrained continuous and discrete problems. The toolbox, developed in this book, includes functions for linear programming, quadratic programming, binary integer programming, nonlinear optimization, nonlinear least squares, systems of nonlinear equations, and multiobjective optimization. You can use them to find optimal solutions, perform tradeoff analyses, balance multiple design alternatives, and incorporate optimization methods into algorithms and models. This books develops the optimization functions in MATLAB and presents examples.




Practical Optimization with MATLAB


Book Description

This easy-to-follow guide provides academics and industrial engineers with a state-of-the-art numerical approach to the most frequent technical and economical optimization methods. In an engaging manner, it provides the reader with not only a systematic and comprehensive study, but also with necessary and directly implementable code written in the versatile and readily available platform Matlab. The book offers optimization methods for univariate and multivariate constrained or unconstrained functions, general optimization methods and multicriteria optimization methods; provides intuitively, step-by-step explained sample Matlab code, that can be easily adjusted to meet individual requirements; and uses a clear, concise presentation style, which will be suited to readers even without a programming background, as well as to students preparing for examinations in optimization methods.




MATLAB Optimization Techniques


Book Description

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Optimization Techniques introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. It begins by introducing the MATLAB environment and the structure of MATLAB programming before moving on to the mathematics of optimization. The central part of the book is dedicated to MATLAB’s Optimization Toolbox, which implements state-of-the-art algorithms for solving multiobjective problems, non-linear minimization with boundary conditions and restrictions, minimax optimization, semi-infinitely constrained minimization and linear and quadratic programming. A wide range of exercises and examples are included, illustrating the most widely used optimization methods.




Optimization


Book Description

Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co




Applied Optimization with MATLAB Programming


Book Description

Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB® tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB® code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.




Optimization in Practice with MATLAB


Book Description

This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB® software.




OPTIMIZATION FOR ENGINEERING DESIGN


Book Description

This well-received book, now in its second edition, continues to provide a number of optimization algorithms which are commonly used in computer-aided engineering design. The book begins with simple single-variable optimization techniques, and then goes on to give unconstrained and constrained optimization techniques in a step-by-step format so that they can be coded in any user-specific computer language. In addition to classical optimization methods, the book also discusses Genetic Algorithms and Simulated Annealing, which are widely used in engineering design problems because of their ability to find global optimum solutions. The second edition adds several new topics of optimization such as design and manufacturing, data fitting and regression, inverse problems, scheduling and routing, data mining, intelligent system design, Lagrangian duality theory, and quadratic programming and its extension to sequential quadratic programming. It also extensively revises the linear programming algorithms section in the Appendix. This edition also includes more number of exercise problems. The book is suitable for senior undergraduate/postgraduate students of mechanical, production and chemical engineering. Students in other branches of engineering offering optimization courses as well as designers and decision-makers will also find the book useful. Key Features Algorithms are presented in a step-by-step format to facilitate coding in a computer language. Sample computer programs in FORTRAN are appended for better comprehension. Worked-out examples are illustrated for easy understanding. The same example problems are solved with most algorithms for a comparative evaluation of the algorithms.




The Elements of MATLAB Style


Book Description

The Elements of MATLAB Style is a guide for both new and experienced MATLAB programmers. It provides a comprehensive collection of standards and guidelines for creating solid MATLAB code that will be easy to understand, enhance, and maintain. It is written for both individuals and those working in teams in which consistency is critical. This is the only book devoted to MATLAB style and best programming practices, focusing on how MATLAB code can be written in order to maximize its effectiveness. Just as Strunk and White's The Elements of Style provides rules for writing in the English language, this book provides conventions for formatting, naming, documentation, programming and testing. It includes many concise examples of correct and incorrect usage, as well as coverage of the latest language features. The author also provides recommendations on use of the integrated development environment features that help produce better, more consistent software.




Metaheuristics: Outlines, MATLAB Codes and Examples


Book Description

The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.




Advanced Optimization and Decision-Making Techniques in Textile Manufacturing


Book Description

Optimization and decision making are integral parts of any manufacturing process and management system. The objective of this book is to demonstrate the confluence of theory and applications of various types of multi-criteria decision making and optimization techniques with reference to textile manufacturing and management. Divided into twelve chapters, it discusses various multi-criteria decision-making methods such as AHP, TOPSIS, ELECTRE, and optimization techniques like linear programming, fuzzy linear programming, quadratic programming, in textile domain. Multi-objective optimization problems have been dealt with two approaches, namely desirability function and evolutionary algorithm. Key Features Exclusive title covering textiles and soft computing fields including optimization and decision making Discusses concepts of traditional and non-traditional optimization methods with textile examples Explores pertinent single-objective and multi-objective optimizations Provides MATLAB coding in the Appendix to solve various types of multi-criteria decision making and optimization problems Includes examples and case studies related to textile engineering and management