MATLAB® With Applications in Mechanics and Tribology


Book Description

Among the wide range of programming tools available, the technical analysis and calculations are realized by MATLAB®, which is recognized as a convenient and effective tool for modern science and technology. Thus, mastering its latest versions and practical solutions is increasingly essential for the creation of new products in mechanics, electronics, chemistry, life sciences, and modern industry. Modern mechanical and tribology sciences specialists widely use computers and some special programs, but need a universal tool for solving, simulating, and modeling specific problems from their area. There is plenty of information available on MATLAB® for the general engineer, but there is a gap in the field for research that applies MATLAB® to two wide, interdisciplinary, and topical areas: tribology and mechanics. MATLAB® With Applications in Mechanics and Tribology explores how MATLAB® is used as a tool for subsequent computer solutions, applying it to both traditional and modern problems of mechanics and materials sciences. The problem solving in this book includes calculations of the mechanical parts, machine elements, production process, quality assurance, fluid mechanics parameters, thermodynamic and rheological properties of the materials as well as the state equations, descriptive statistics, and more. This book is ideal for scientists, students and professors of engineering courses, self-instructing readers, programmers, computer scientists, practitioners, and researchers looking for concise and clear information on learning and applying MATLAB® software to mechanics, tribology, and material physics.




Fundamentals of Engineering Tribology with Applications


Book Description

Tribology is related to friction, wear and lubrication of machine elements. Tribology not only deals with the design of fluid containment systems like seals and gasket but also with the lubrication of surfaces in relative motion. This book comprehensively discusses the theories and applications of hydrodynamic thrust bearing, gas (air) lubricated bearing and elasto-hydrodynamic lubrication. It elucidates the concepts related to friction, including coefficient of friction, friction instability and stick-slip motion. It clarifies the misconception that harder and cleaner surfaces produce better results in wear. Recent developments, including online condition monitoring (an integration of moisture sensor, wear debris and oil quality sensors) and multigrid technique, are discussed in detail. The book also offers design problems and their real-life applications for cams, followers, gears and bearings. MATLAB programs, frequently asked questions and multiple choice questions are interspersed throughout for easy understanding of the topics.




Sheet Metal Meso- and Microforming and Their Industrial Applications


Book Description

The book presents a compilation of research on meso/microforming processes, and offers systematic and holistic knowledge for the physical realization of developed processes. It discusses practical applications in fabrication of meso/microscale metallic sheet-metal parts via sheet-metal meso/microforming. In addition, the book provides extensive and informative illustrations, tables, case studies, photos and figures to convey knowledge of sheet-metal meso/microforming for fabrication of meso/microscale sheet-metal products in an illustrated manner. Key Features • Presents complete analysis and discussion of micro sheet metal forming processes • Guides reader across the mechanics, failures, prediction of failures and tooling and prospective applications • Discusses definitions of multi-scaled metal forming, sheet-metal meso/microforming and the challenges in such domains • Includes meso/micro-scaled sheet-metal parts design from a micro-manufacturability perspective, process determination, tooling design, product quality analysis, insurance and control • Covers industrial application and examples




Deep Learning Applications for Cyber-Physical Systems


Book Description

Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.




Mechanical Simulation with MATLAB®


Book Description

This book deals with the simulation of the mechanical behavior of engineering structures, mechanisms and components. It presents a set of strategies and tools for formulating the mathematical equations and the methods of solving them using MATLAB. For the same mechanical systems, it also shows how to obtain solutions using a different approaches. It then compares the results obtained with the two methods. By combining fundamentals of kinematics and dynamics of mechanisms with applications and different solutions in MATLAB of problems related to gears, cams, and multilink mechanisms, and by presenting the concepts in an accessible manner, this book is intended to assist advanced undergraduate and mechanical engineering graduate students in solving various kinds of dynamical problems by using methods in MATLAB. It also offers a comprehensive, practice-oriented guide to mechanical engineers dealing with kinematics and dynamics of several mechanical systems.




Fundamentals of Engineering Tribology with Applications


Book Description

"Presents explanation on the theories and applications of hydrodynamic thrust bearing, gas (air) lubricated bearing and elasto-hydrodynamic lubrication"--




PDE Toolbox Primer for Engineering Applications with MATLAB® Basics


Book Description

Partial differential equations (PDEs) describe technological phenomena and processes used for the analysis, design, and modeling of technical products. Solutions of spatial and transient PDEs are realized by using the PDE Toolbox included in the MATLAB® software. MATLAB® is introduced here as an essential foundation for PDE, and the Modeler of the PDE Toolbox, with appropriate explanatory solutions, is applied to engineering problems in mechanics, heat/mass transfer, tribology, materials science, physics, and biotechnology. The appendixes contain collections of commands and functions used to solve actual engineering problems. FEATURES Includes the PDE Modeler interface with example solutions of two- and three-dimensional PDEs Presents methodologies for all types of PDEs as representative of any engineering problem Describes the ordinate differential equation (ODE) solver for initial value and boundary value problems (IVP and BVP) through practical examples from mechanics and the thermodynamic properties of materials Covers the basics of MATLAB® to solve both ODEs and PDEs Reviews spatially the one-dimensional PDE solver with actual engineering examples PDE Toolbox Primer for Engineering Applications with MATLAB® Basics is aimed at scientists, students, professionals, practitioners, self-taught readers, and researchers who need concise and clear information to study and apply MATLAB® software and the PDE Toolbox in engineering.




Advances in Microfluidic Technologies for Energy and Environmental Applications


Book Description

Microfluidics have aroused a new surge of interest in recent years in environmental and energy areas, and inspired novel applications to tackle the worldwide challenges for sustainable development. This book aims to present readers with a valuable compendium of significant advances in applying the multidisciplinary microfluidic technologies to address energy and environmental problems in a plethora of areas such as environmental monitoring and detection, new nanofluid application in traditional mechanical manufacturing processes, development of novel biosensors, and thermal management. This book will provide a new perspective to the understanding of the ever-growing importance of microfluidics.




Surface Effects and Contact Mechanics XI


Book Description

Containing the papers from the eleventh biennial conference on the topic, first held in 1993, this book covers contact mechanics and surface effects and their interaction, so important in modern engineering. The life and performance of structural components is affected by surface conditions such as wear, corrosion and, high cycle fatigue. Surface treatments that address contact conditions can reduce costs by extending the life of components. Hence the importance of the conference discussions.The book's papers cover such matters as Experimental and measurement tests; Fracture fatigue and mechanics; Surface modification; Surface problems in contact mechanics; Thick and thin coatings; Heat transfers; Multiscale experiments and modelling; Computer simulation; Biocompatible materials; Vacuum technologies; Residual stress problems; Tribomechanics; Case studies.