Torsion of Thin Walled Structures


Book Description

This comprehensive textbook focuses on the torsion in thin walled structures, highlights the nuances of the problems faced and succinctly discusses warping, bimoment, etc. Since in several thin walled structures, torsion is the only or dominant loading, this book addresses such unique structures as well. It provides a concise explanation of the warping properties and how they are evaluated. Thin walled structures with torsion as the preponderant loading are then treated using classical and finite element methods. No prior knowledge of the finite element method is required as the method is introduced from the basics. The same problem is worked out by both approaches so that the concepts are clearly understood by the readers. The book includes pedagogical features such as end-of-chapter questions and worked out examples to augment learning and self-testing. The book will be useful for graduate courses as well as for professional development coursework for structural engineers in the aerospace, mechanical, and civil engineering domains.













Nonlinear Mechanics of Thin-Walled Structures


Book Description

This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book.




Strength of Structural Elements


Book Description

This volume describes engineering applications of the mechanics of deformable bodies and the elasticity theory relevant to them. It is concerned mainly with one-dimensional problems, which arise because either one of the dimensions of a body is much greater than the remaining two or the functions of two or three variables may be reduced to one variable.Problems of this type are of twofold importance. Firstly, many engineering problems can be described with sufficient accuracy just in this way. Secondly, unidimensional problems with known analytical solutions may serve either for testing numerical methods or for the analysis of fundamental concepts and phenomena, whose physical nature in three-dimensional approach might be obscured by the analytical-numerical aspect. The authors have confined themselves for the most part to the analysis of elastic behaviour of structures; however some attention is also given to elastic problems. A deterministic approach has been applied throughout the book. It will serve as a springboard for further work with stochastic approaches which are being increasingly used in engineering practice today.




Thin-Walled Structures


Book Description

This volume contains the papers presented at the Fourth International Conference of Thin-Walled Structures (ICTWS4), and contains 110 papers which, collectively, provide a comprehensive state-of-the-art review of the progress made in research, development and manufacture in recent years in thin-walled structures.The presentations at the conference had representation form 35 different countries and their topical areas of interest included aeroelastic response, structural-acoustic coupling, aerospace structures, analysis, design, manufacture, cold-formed structures, cyclic loading, dynamic loading, crushing, energy absorption, fatigue, fracture, damage tolerance, plates, stiffened panels, plated structures, polymer matrix composite members, sandwich structures, shell structures, thin-walled beams, columns and vibrational response. The range of applications of thin-walled structures has become increasingly diverse with a considerable deployment of thin-walled structural elements and systems being found in a wide range of areas within Aeronautical, Automotive, Civil, Mechanical, Chemical and Offshore Engineering fields. This volume is an extremely useful reference volume for researchers and designers working within a wide range of engineering disciplines towards the design, development and manufacture of efficient thin-walled structural systems.




Structural Mechanics


Book Description

This book presents a complete and unified treatment of the fundamental themes of structural mechanics, ranging from the traditional to the most advanced topics, covering mechanics of linear elastic solids, theory of beam systems, and phenomena of structural failure. The book considers explicitly all the static and kenetic operators of structural mechanics with their dual character. Topics relating to structural symmetry are covered in a single chapter while dynamics is dealt with at various points. The logical presentation allows the clear introduction of topics such as finite element methods, automatic calculation of framed beam systems, plate and shell theory, theory of plasticity, and fracture mechanics. Numerous worked examples, exercises with complete solutions and illustrations make it accessible both as a text for students and as a reference for research workers and practicing engineers.




Thin-walled Elastic Beams


Book Description