Matrix Theory


Book Description

This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.




Linear Algebra and Matrix Theory


Book Description

Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.




Matrix Analysis


Book Description

Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.




Matrix Theory: A Second Course


Book Description

Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.




Matrix Theory


Book Description

Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.




A Survey of Matrix Theory and Matrix Inequalities


Book Description

Concise, masterly survey of a substantial part of modern matrix theory introduces broad range of ideas involving both matrix theory and matrix inequalities. Also, convexity and matrices, localization of characteristic roots, proofs of classical theorems and results in contemporary research literature, more. Undergraduate-level. 1969 edition. Bibliography.




Introduction to Random Matrices


Book Description

Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.




Basic Matrix Theory


Book Description

This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.




A First Course in Random Matrix Theory


Book Description

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.




Topics in Random Matrix Theory


Book Description

The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.