Maverick Mathematician


Book Description

"J.E. Moyal has been pronounced 'one of Australia's most remarkable thinkers'. Yet, he was, essentially, a scientific maverick. Educated in a modest high school in Tel Aviv, he took himself to France to train as an engineer, statistician and mathematician and escaped to England as France fell. It was from outside academia that he entered into communication with the 'high priest' of British theoretical physics, P.A.M. Dirac, challenging him with the idea of a statistical basis of quantum mechanics. Their correspondence forms the core of this book and opens up an important and hitherto unknown chapter for physicists, mathematicians and historians of science. Moyal's classic paper, 'A statistical basis for quantum mechanics', also reproduced here in full, has come to underlie an explosion of research and to underpin an array of major technological developments."--Publisher's description.




Memoirs of a Maverick Mathematician


Book Description

Dr Zoltan Dienes is a world-famous theorist and tireless practitioner of the 'new mathematics' - an approach to mathematics learning which uses games, songs and dance to make it more appealing to children. Holder of numerous honorary degrees, Dr Dienes has had a long and fruitful career, breaking new ground and gaining many followers with his revolutionary ideas of learning often complex mathematical concepts in such fun ways that children are often unaware that they are learning anything.This is an honest account of an academic radical, covering his sometimes unconventional childhood in Hungary, France, Germany and Britain, his peripatetic academic career, his successes and failures and his personal affairs. Occasionally sad or moving, frequently amusing and always fascinating, this autobiography shares some of the intelligence, spirit and humanity that have made Dr Dienes such a landmark figure in mathematics education. A 'must-read' for anyone with a professional interest in the field, this is also an absorbing and frank book for anyone interested in the life of a man of ideas who was not afraid to take on the might of the traditionalist educational establishment.




The Fractalist


Book Description

Here is the remarkable life story of Benoit Mandelbrot, the creator of fractal geometry, and his unparalleled contributions to science mathematics, the financial world, and the arts. Mandelbrot recounts his early years in Warsaw and in Paris, where he was mentored by an eminent mathematician uncle, through his days evading the Nazis in occupied France, to his education at Caltech, Princeton, and MIT, and his illustrious career at the IBM Thomas J. Watson Research Center. An outside to mainstream scientific research, he managed to do what others had thought impossible: develop a new geometry that combines revelatory beauty with a radical way of unfolding formerly hidden scientific laws. In the process he was able to use geometry to solve fresh, real-world problems. With exuberance and an eloquent fluency, Benoit Mandelbrot recounts the high points of his fascinating life, offering us a glimpse into the evolution of his extraordinary mind. With full-color inserts and black-and-white photographs throughout.




Make: Maverick Scientist


Book Description

Maverick Scientist is the memoir of Forrest Mims, who forged a distinguished scientific career despite having no academic training in science. Named one of the "50 Best Brains in Science" by Discover magazine, Forrest shares what sparked his childhood curiosity and relates a lifetime of improbable, dramatic, and occasionally outright dangerous experiences in the world of science. At thirteen he invented a new method of rocket control. At seventeen he designed and built an analog computer that could translate Russian into English and that the Smithsonian collected as an example of an early hobby computer. While majoring in government at Texas A&M University, Forrest created a hand-held, radar-like device to help guide the blind. And during his military service, he had to be given special clearance to do top secret laser research at the Air Force Weapons Lab. Why? Because while he lacked the required engineering degree, they wanted his outside-the-box thinking on the project. He went on to co-found MITS, Inc., producer of the first commercially successful personal computer, wrote a series of electronics books for Radio Shack that sold more than seven million copies, and designed the music synthesizer circuit that became known as the infamous Atari Punk Console. All this came before he started consulting for NASA's Goddard Space Flight Center, and NOAA's famous Mauna Loa Observatory, and earning the prestigious Rolex Award. This intimate portrait of a self-made scientist shares a revelatory look inside the scientific community, and tells the story of a lifelong learner who stood by his convictions even when pressured by the establishment to get in line with conventional wisdom. With dozens of personal photos and illustrations, Maverick Scientist serves as proof that to be a scientist, you simply need to do science.




Maverick Genius


Book Description

Freeman Dyson has been influential in many fields over his long and legendary career, including quantum physics, national defense, space, and religion. In this definitive biography, Schewe examines the life of one of the most innovative thinkers.




Cultures of Mathematics and Logic


Book Description

This book gathers the proceedings of the conference "Cultures of Mathematics and Logic," held in Guangzhou, China. The event was the third in a series of interdisciplinary, international conferences emphasizing the cultural components of philosophy of mathematics and logic. It brought together researchers from many disciplines whose work sheds new light on the diversity of mathematical and logical cultures and practices. In this context, the cultural diversity can be diachronical (different cultures in different historical periods), geographical (different cultures in different regions), or sociological in nature.




PAUL HALMOS Celebrating 50 Years of Mathematics


Book Description

Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and respect for his contributions as scholar, writer, and teacher. It contains articles about Paul, about the times in which he worked and the places he has been, and about mathematics. Paul has furthered his profession in many ways and this collection reflects that diversity. Articles about Paul are not biographical, but rather tell about his ideas, his philosophy, and his style. Articles about the times and places in which Paul has worked describe people, events, and ways in which Paul has influenced students and colleagues over the past 50 years. Articles about mathematics are about all kinds of mathematics, including operator theory and Paul's research in the subject. This volume represents a slice of mathematical life and it shows how many parts of mathematics Paul has touched. It is fitting that this volume has been produced with the support and cooperation of Springer-Verlag. For over 35 years, Paul has contributed to mathematics publishing as founder and editor of many outstanding series.




What Is Mathematics, Really?


Book Description

Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.




A Concise Treatise On Quantum Mechanics In Phase Space


Book Description

This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions — density matrices in a special Weyl representation — and star products are the cornerstones of the formalism.The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative way to formulate and understand quantum mechanics, independent of the conventional Hilbert space or path integral approaches to the subject.In this logically complete and self-standing formulation, one need not choose sides between coordinate or momentum space variables. It works in full phase space, accommodating the uncertainty principle; and it offers unique insights into the classical limit of quantum theory. The observables in this formulation are c-number functions in phase space instead of operators, with the same interpretation as their classical counterparts, only composed together in novel algebraic ways using star products.This treatise provides an introductory overview and supplementary material suitable for an advanced undergraduate or a beginning graduate course in quantum mechanics.




The Making of Mathematics


Book Description

This book offers an alternative to current philosophy of mathematics: heuristic philosophy of mathematics. In accordance with the heuristic approach, the philosophy of mathematics must concern itself with the making of mathematics and in particular with mathematical discovery. In the past century, mainstream philosophy of mathematics has claimed that the philosophy of mathematics cannot concern itself with the making of mathematics but only with finished mathematics, namely mathematics as presented in published works. On this basis, mainstream philosophy of mathematics has maintained that mathematics is theorem proving by the axiomatic method. This view has turned out to be untenable because of Gödel’s incompleteness theorems, which have shown that the view that mathematics is theorem proving by the axiomatic method does not account for a large number of basic features of mathematics. By using the heuristic approach, this book argues that mathematics is not theorem proving by the axiomatic method, but is rather problem solving by the analytic method. The author argues that this view can account for the main items of the mathematical process, those being: mathematical objects, demonstrations, definitions, diagrams, notations, explanations, applicability, beauty, and the role of mathematical knowledge.