3 Doors Down - Seventeen Days


Book Description

(Piano/Vocal/Guitar Artist Songbook). 12 songs from the third album by this Mississippi rock band: Behind Those Eyes * Here by Me * It's Not Me * Landing in London * Let Me Go * My World * The Real Life * Right Where I Belong * and more.




Singular Integrals


Book Description







Heart-life in Song


Book Description




Homotopy Theory via Algebraic Geometry and Group Representations


Book Description

The academic year 1996-97 was designated as a special year in Algebraic Topology at Northwestern University (Evanston, IL). In addition to guest lecturers and special courses, an international conference was held entitled "Current trends in algebraic topology with applications to algebraic geometry and physics". The series of plenary lectures included in this volume indicate the great breadth of the conference and the lively interaction that took place among various areas of mathematics. Original research papers were submitted, and all submissions were refereed to the usual journal standards.




Integration - A Functional Approach


Book Description

This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work.




New Directions in Dirichlet Forms


Book Description

The theory of Dirichlet forms brings together methods and insights from the calculus of variations, sotchastic analysis, partial differential and difference equations, potential theory, Riemannian geometry and more. This book features contributions by leading experts and provides up-to-date, authoritative accounts on exciting developments in the field and on new research perspectives. Topics covered include the following: stochastic analysis on configuration spaces, specifically a mathematically rigorous approach to the stochastic dynamics of Gibbs measures and infinite interacting particle systems; subelliptic PDE, homogenization, and fractals; geometric aspects of Dirichlet forms on metric spaces and function theory on such spaces; generalized harmonic maps as nonlinear analogues of Dirichlet forms, with an emphasis on non-locally compact situations; and a stochastic approach based on Brownian motion to harmonic maps and their regularity. Various new connections between the topics are featured, and it is demonstarted that the theory of Dirichlet forms provides the proper framework for exploring these connections. Titles in this series are co-published with International Press, Cambridge, MA.




Everyman's Dictionary of Economics


Book Description

"Everyman's Dictionary of Economics provides over nineteen hundred concise desk encyclopedia-style articles on economic terms and concepts, as well as on significant people working in the field, in plain, nontechnical English. The articles challenge readers' acceptance of the conventional wisdom on such subjects as government intervention in economic matters."--BOOK JACKET.




Solved and Unsolved Problems in Number Theory


Book Description

The investigation of three problems, perfect numbers, periodic decimals, and Pythagorean numbers, has given rise to much of elementary number theory. In this book, Daniel Shanks, past editor of Mathematics of Computation, shows how each result leads to further results and conjectures. The outcome is a most exciting and unusual treatment. This edition contains a new chapter presenting research done between 1962 and 1978, emphasizing results that were achieved with the help of computers.