Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing


Book Description

Over 130 years ago, James Clerk Maxwell introduced his hypothetical "demon" as a challenge to the scope of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science, and links have been established between Maxwell's demon and each of




Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing


Book Description

Over 130 years ago, James Clerk Maxwell introduced his hypothetical "demon" as a challenge to the scope of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science, and links have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Since the publication of Maxwell's Demon: Entropy, Information, Computing in 1990, Maxwell's demon has been the subject of renewed and increased interest by numerous researchers in the fields mentioned above. Updated and expanded, Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing retains many of the seminal papers that appeared in the first edition, including the original thoughts of James Clerk Maxwell and William Thomson; a historical review by Martin Klein; and key articles by Leo Szilard, Leon Brillouin, Rolf Landauer, and Charles Bennett that led to new branches of research on the demon. This second edition contains newer articles by Landauer, Bennett, and others, related to Landauer's principle; connections with quantum mechanics; algorithmic information; and the thermodynamics and limits of computation. The book also includes two separate bibliographies: an alphabetical listing by author and a chronological bibliography that is annotated by the editors and contains selected quotes from the books and articles listed. The bibliography has more than doubled in size since publication of the first edition and now contains over 570 entries.




Maxwell's Demon


Book Description

About 120 years ago, James Clerk Maxwell introduced his now legendary hypothetical "demon" as a challenge to the integrity of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science--and linkages have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Until now its important source material has been scattered throughout diverse journals. This book brings under one cover twenty-five reprints, including seminal works by Maxwell and William Thomson; historical reviews by Martin Klein, Edward Daub, and Peter Heimann; information theoretic contributions by Leo Szilard, Leon Brillouin, Dennis Gabor, and Jerome Rothstein; and innovations by Rolf Landauer and Charles Bennett illustrating linkages with the limits of computation. An introductory chapter summarizes the demon's life, from Maxwell's illustration of the second law's statistical nature to the most recent "exorcism" of the demon based on a need periodically to erase its memory. An annotated chronological bibliography is included. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Information Theory


Book Description

This eighteenth volume in the Poincaré Seminar Series provides a thorough description of Information Theory and some of its most active areas, in particular, its relation to thermodynamics at the nanoscale and the Maxwell Demon, and the emergence of quantum computation and of its counterpart, quantum verification. It also includes two introductory tutorials, one on the fundamental relation between thermodynamics and information theory, and a primer on Shannon's entropy and information theory. The book offers a unique and manifold perspective on recent mathematical and physical developments in this field.




The Routledge Companion to Thought Experiments


Book Description

Thought experiments are a means of imaginative reasoning that lie at the heart of philosophy, from the pre-Socratics to the modern era, and they also play central roles in a range of fields, from physics to politics. The Routledge Companion to Thought Experiments is an invaluable guide and reference source to this multifaceted subject. Comprising over 30 chapters by a team of international contributors, the Companion covers the following important areas: · the history of thought experiments, from antiquity to the trolley problem and quantum non-locality; · thought experiments in the humanities, arts, and sciences, including ethics, physics, theology, biology, mathematics, economics, and politics; · theories about the nature of thought experiments; · new discussions concerning the impact of experimental philosophy, cross-cultural comparison studies, metaphilosophy, computer simulations, idealization, dialectics, cognitive science, the artistic nature of thought experiments, and metaphysical issues. This broad ranging Companion goes backwards through history and sideways across disciplines. It also engages with philosophical perspectives from empiricism, rationalism, naturalism, skepticism, pluralism, contextualism, and neo-Kantianism to phenomenology. This volume will be valuable for anyone studying the methods of philosophy or any discipline that employs thought experiments, as well as anyone interested in the power and limits of the mind.




Thermodynamics of Information Processing in Small Systems


Book Description

This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell's demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell's demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.




Thermodynamics and Control of Open Quantum Systems


Book Description

The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.




NMR Quantum Information Processing


Book Description

Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation andquantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area ofresearch in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potentialpractical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena.NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter onthe interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. InChapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, withan upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMRgenerates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIPexperiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussionon the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based invery recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions.* Presents a large number of problems with solutions, ideal for students* Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references




Quantum Information Theory


Book Description

A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.




Molecular Storms


Book Description

“Following in the footsteps of Stephen Hawking's ‘A brief history of time’ and Simon Singh's ‘Fermat’s Last Theorem’ this exceptionally accessible book will you leave marveling at the wonders of the world and, if you didn't listen to your science teachers, wishing you had. Graham writes with the mind of a physicist and the soul of a poet.” Nicki Hayes, CCO, The Communications Practice, author of First Aid for Feelings. “Only a few writers have managed to turn the highly technical jargon of science into language accessible for interested lay readers. Isaac Asimov showed us how it could be done, and Carl Zimmer and Brian Greene are continuing today. In Molecular Storms, his first book, Liam Graham has shown that he has the essential quality required to join this group, a love of first learning then explaining how the universe works." David Deamer, Professor of Biomolecular Engineering, University of California, Santa Cruz, author of Assembling Life. Why is the universe the way it is? Wherever we look, we find ordered structures: from stars to planets to living cells. This book shows that the same driving force is behind structure everywhere: the incessant random motion of the components of matter. Physicists call it thermal noise. Let’s call it the molecular storm. This storm drives the fusion reactions that make stars shine. It drives whirlpools and currents in atmospheres and oceans. It spins and distorts molecules until they are in the right orientation to react and form new substances. In living cells, it drives proteins to fold and molecules to self-assemble. It is behind every detail of the astonishing molecular machines that control cellular processes. Using cutting-edge research, “Molecular Storms” takes us on a dazzling journey from the early universe to the interior of the smallest living things. There, in a nanoscale world of biological devices, it explains the physics behind the chemical system which we call Life. Whether you're someone with a general interest in science or a student looking to add context to your studies, this book is for you. "Molecular Storms" is an accessible and captivating read that will deepen your appreciation of the power of science to explain the world.