Measure Theory Oberwolfach 1983


Book Description




Handbook of Measure Theory


Book Description

The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.







Probability in Banach Spaces IV


Book Description

a







Computational Science and its Applications


Book Description

Computational science is a rapidly growing multidisciplinary field concerned with the design, implementation, and use of mathematical models to analyze and solve real-world problems. It is an area of science that spans many disciplines and which involves the development of models and allows the use of computers to perform simulations or numerical analysis to understand problems that are computational and theoretical. Computational Science and its Applications provides an opportunity for readers to develop abilities to pose and solve problems that combine insights from one or more disciplines from the natural sciences with mathematical tools and computational skills. This requires a unique combination of applied and theoretical knowledge and skills. The topics covered in this edited book are applications of wavelet and fractals, modeling by partial differential equations on flat structure as well as on graphs and networks, computational linguistics, prediction of natural calamities and diseases like epilepsy seizure, heart attack, stroke, biometrics, modeling through inverse problems, interdisciplinary topics of physics, mathematics, and medical science, and modeling of terrorist attacks and human behavior. The focus of this book is not to educate computer specialists, but to provide readers with a solid understanding of basic science as well as an integrated knowledge on how to use essential methods from computational science. Features: Modeling of complex systems Cognitive computing systems for real-world problems Presentation of inverse problems in medical science and their numerical solutions Challenging research problems in many areas of computational science This book could be used as a reference book for researchers working in theoretical research as well as those who are doing modeling and simulation in such disciplines as physics, biology, geoscience, and mathematics, and those who have a background in computational science.




Selected papers. 2 (1986)


Book Description

Works of Shizuo Kakutani, Japanese-American mathematician, best known for his eponymous fixed-point theorem.




Selecta


Book Description

Heinz Bauer (1928-2002) was one of the prominent figures in Convex Analysis and Potential Theory in the second half of the 20th century. The Bauer minimum principle and Bauer's work on Silov's boundary and the Dirichlet problem are milestones in convex analysis. Axiomatic potential theory owes him what is known by now as Bauer harmonic spaces. These Selecta collect more than twenty of Bauer's research papers including his seminal papers in Convex Analysis and Potential Theory. Above his research contributions Bauer is best known for his art of writing survey articles. Five of his surveys on different topics are reprinted in this volume. Among them is the well-known article Approximation and Abstract Boundary, for which he was awarded with the Chauvenet Price by the American Mathematical Association in 1980.




Measure Theory


Book Description