Measurement and Analysis of Kinetic Isotope Effects


Book Description

Experimental Analysis of Enzyme Mechanism Using Isotope Effects, Volume 596, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this comprehensive update include Measurement of enzyme binding isotope effects, Chemical ligation and isotope labeling to locate dynamic effects, Measurement of heavy enzyme isotope effects, Extracting kinetic isotope effects from a global analysis of reaction progress curves, KIE of metabolic flux and enzymes, Solvent and Primary KIE on Flavin Enzymes, and The Rapid Determination of Primary Deuterium Isotope Effects on Enzyme-Catalyzed Proton Transfer at Carbon in 50/50 HOH/DOD. Readers who are interested in applying or understanding this research will find useful methods currently used for measuring isotope effects on solution and enzyme reactions. Written by pioneers of modern isotope effect research Is the only collection of modern kinetic isotope effect methods currently available




Isotope Effects In Chemistry and Biology


Book Description

The field of isotope effects has expanded exponentially in the last decade, and researchers are finding isotopes increasingly useful in their studies. Bringing literature on the subject up to date, Isotope Effects in Chemistry and Biology covers current principles, methods, and a broad range of applications of isotope effects in the physical, biolo







Isotope Effects


Book Description

As the title suggests, Isotope Effects in the Chemical, Geological and Bio Sciences deals with differences in the properties of isotopically substituted molecules, such as differences in the chemical and physical properties of water and the heavy waters. Since the various fields in which isotope effects are applied do not only share fundamental principles but also experimental techniques, this book includes a discussion of experimental apparatus and experimental techniques. Isotope Effects in the Chemical, Geological and Bio Sciences is an educational monograph addressed to graduate students and others undertaking isotope effect research. The fundamental principles needed to understand isotope effects are presented in appropriate detail. While it is true that these principles are more familiar to students of physical chemistry and some background in physical chemistry is recommended, the text provides enough detail to make the book an asset to students in organic and biochemistry, and geochemistry.




Understanding Organometallic Reaction Mechanisms and Catalysis


Book Description

Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper understanding of the underlying reaction mechanism and correlation between molecular structure and reactivity. The contributions represent a wealth of first-hand information from renowned experts working in these disciplines, covering such topics as activation of small molecules, C-C and C-Heteroatom bonds formation, cross-coupling reactions, carbon dioxide converison, homogeneous and heterogeneous transition metal catalysis and metal-graphene systems. With the knowledge gained, the reader will be able to improve existing reaction protocols and rationally design more efficient catalysts or selective reactions. An indispensable source of information for synthetic, analytical, and theoretical chemists in academia and industry.




Handbook of Nuclear Chemistry


Book Description

This revised and extended 6 volume handbook set is the most comprehensive and voluminous reference work of its kind in the field of nuclear chemistry. The Handbook set covers all of the chemical aspects of nuclear science starting from the physical basics and including such diverse areas as the chemistry of transactinides and exotic atoms as well as radioactive waste management and radiopharmaceutical chemistry relevant to nuclear medicine. The nuclear methods of the investigation of chemical structure also receive ample space and attention. The international team of authors consists of scores of world-renowned experts - nuclear chemists, radiopharmaceutical chemists and physicists - from Europe, USA, and Asia. The Handbook set is an invaluable reference for nuclear scientists, biologists, chemists, physicists, physicians practicing nuclear medicine, graduate students and teachers - virtually all who are involved in the chemical and radiopharmaceutical aspects of nuclear science. The Handbook set also provides further reading via the rich selection of references.







Enzyme Mechanism from Isotope Effects


Book Description

Isotope effects have become one of the most powerful tools available to the enzymologist for probing enzymic mechanisms. Enzyme Mechanism from Isotope Effects presents the basic theory underlying isotope effects, including the latest findings on proton tunneling and coupled atomic notions. Specific theoretical applications are emphasized in regard to the types of information that can be obtained using isotope effects. The book also examines recent theoretical treatments of the product dependence of deuterium isotope effects, multiple isotope effects and isotope effects on intermediate partitioning. Other topics include a complete discussion of methods for measuring isotope effects, including a detailed description of the use of the isotope ratio mass spectrometer to obtain isotope effects, and a review of the literature regarding mechanistic information obtained from isotope effects for individual classes of enzyme-catalyzed reactions. Enzyme Mechanism from Isotope Effects is an excellent reference source for investigators using isotope effects in their research. The book is also valuable for reference libraries and instructors teaching courses in enzyme mechanism.




Compound-specific Stable Isotope Analysis


Book Description

The use of Compound-specific Stable Isotope Analysis (CSIA) is increasing in many areas of science and technology for source allocation, authentication, and characterization of transformation reactions. Until now, there have been no textbooks available for students with an analytical chemical background or basic introductory books emphasising the instrumentation and theory. This book is the first to focus solely on stable isotope analysis of individual compounds in sometimes complex mixtures. It acts as both a lecture companion for students and a consultant for advanced scientists in fields including forensic and environmental science. The book starts with a brief history of the field before going on to explain stable isotopes from scratch. The different ways to express isotope abundances are introduced together with isotope effects and isotopic fractionation. A detailed account of the required technical equipment and general procedures for CSIA is provided. This includes sections on derivatization and the use of microextraction techniques in GC-IRMS. The very important topic of referencing and calibration in CSIA is clearly described. This differs from approaches used in quantitative analysis and is often difficult for the newcomer to comprehend. Examples of successful applications of CSIA in food authenticity, forensics, archaeology, doping control, environmental science, and extraterrestrial materials are included. Applications in isotope data treatment and presentation are also discussed and emphasis is placed on the general conclusions that can be drawn from the uses of CSIA. Further instrumental developments in the field are highlighted and selected experiments are introduced that may act as a basis for a short practical course at graduate level.




Isotope Tracers in Metabolic Research


Book Description

In the past few years, the number of applications of tracers for in vivo biomedical studies has greatly increased. New analytical tools at the genetic and protein levels have spurred this growth, opening the door for a deeper understanding of metabolic events. This in turn promises to yield significant advances in the understanding and treatment of human disease. Now fully revised and expanded, Isotope Tracers in Metabolic Research, Second Edition is the established definitive text on stable and radioactive isotope tracers. In unique, multidisciplinary fashion, it presents comprehensive coverage of new methodological, mathematical, and theoretical approaches. This new Second Edition includes: All-new chapters on nuclear magnetic resonance, mass isotopomer analysis, and methods of protein metabolism analysis A completely updated categorized list of over 750 references Major advances in the development of mass isotopomer and positional isotopomer techniques, noninvasive isotope techniques for studying metabolic pathways, hyphenated techniques, and new tracer techniques The latest developments in quantification of DNA synthesis and mass spectrometry spurred by genome sequencing and proteomics New coverage of mathematical modeling Expanded coverage of microdialysis probes, laboratory procedures, and regulatory issues related to human studies In this complete guide to performing tracer studies, the authors systematically cover tracer selection, modeling considerations, sample derivitization, mass spectrometry analysis, and data interpretation. Problems and discussion questions highlight key points in each chapter. Isotope Tracers in Metabolic Research, Second Edition offers students and researchers a comprehensive, practical resource for utilizing the latest tracer methodologies.