Associated Production of W + Charm in 13 TeV Proton-Proton Collisions Measured with CMS and Determination of the Strange Quark Content of the Proton


Book Description

The associated production of a W boson and a single charm quark (W+c) is the only process in proton-proton collisions that directly probes the strange quark content of the proton. In this thesis, W+charm production is measured in proton-proton collisions at the LHC at 13 TeV, as recorded by the Compact Muon Solenoid (CMS) experiment. The analysis focuses on the identification of W bosons in their leptonic decay to a muon and a neutrino and charm quarks are tagged via the full reconstruction of D*-Mesons. The measured cross sections of W+c production are used, in combination with other relevant CMS results and the most precise HERA DIS data, in a QCD analysis to determine the strange quark content of the proton. The resulting strange quark distribution and suppression, with respect to the other light sea quarks, are in good agreement with those obtained in neutrino scattering experiments and extend their kinematic reach.




Towards Global Interpretation of LHC Data


Book Description

This book presents the first global interpretation of measurements of jet and top quark production at the Large Hadron Collider, including a simultaneous extraction of the standard model parameters together with constraints on new physics, unbiased from the assumptions on the standard model parameters. As a long-standing problem, any hadron collider search for new physics depends on parton distribution functions, which cannot be predicted but are extracted experimentally. However, performing the extraction in the same kinematic region where physics beyond the standard model is expected to manifest causes the risk of absorbing the new physics effects into the parton distributions. In this book, the issue is addressed by extending the standard model by effective contributions from quark contact interactions describing new physics and extracting the parton distributions and standard model parameters simultaneously with setting limits on the contact interactions. In the process, the most precise single measurement of the strong coupling constant at the LHC is performed, to date. Furthermore, the book details the first investigation of the mass renormalization scale dependence of the top quark mass, highlighting the importance of a proper scale choice for obtaining robust predictions and improving the precision of experimental analyses. The initial chapters provide the reader with a succinct yet accessible introduction to the relevant theoretical and experimental topics. The presented investigations are at the edge of precision in the phenomenology of high-energy physics and serve to pave the road toward a global interpretation of LHC data.




Electroweak Physics at the LHC


Book Description

The book discusses the recent experimental results obtained at the LHC that involve electroweak bosons. The results are placed into an appropriate theoretical and historical context. The work pays special attention to the rising subject of hadronically decaying bosons with high boosts, documenting the state-of-the-art identification techniques and highlighting typical results. The text is not limited to electroweak physics in the strict sense, but also discusses the use of electroweak vector-bosons as tool in the study of other subjects in particle physics, such as determinations of the proton structure or the search for new exotic particles. The book is particularly well suited for graduate students, starting their thesis work on topics that involve electroweak bosons, as the book provides a comprehensive description of phenomena observable at current accelerators as well as a summary of the most relevant experimental techniques.




Multiple Parton Interactions At The Lhc


Book Description

Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.




Physics Briefs


Book Description




Search for Higgs Boson Decays to Charm Quarks with the ATLAS Experiment and Development of Novel Silicon Pixel Detectors


Book Description

This book explores the Higgs boson and its interactions with fermions, as well as the detector technologies used to measure it. The Standard Model of Particle Physics has been a groundbreaking theory in our understanding of the fundamental properties of the universe, but it is incomplete, and there are significant hints which require new physics. The discovery of the Higgs boson in 2012 was a substantial confirmation of the Standard Model, but many of its decay modes remain elusive. This book presents the latest search for Higgs boson decays into c-quarks using a proton-proton collision dataset collected by the ATLAS experiment at the Large Hadron Collider (LHC). This decay mode has yet to be observed and requires advanced machine learning algorithms to identify c-quarks in the experiment. The results provide an upper limit on the rate of Higgs boson decays to c-quarks and a direct measurement of the Higgs boson coupling strength to c-quarks. The book also discusses the future of particle physics and the need for significant improvements to the detector to cope with increased radiation damage and higher data rates at the High-Luminosity LHC. It presents the characterization of the ATLAS pixel detector readout chip for the inner detector upgrade (ITk). The chip was subjected to irradiations using X-rays and protons to simulate the radiation environment at the HL-LHC. The tests showed that all readout chip components, including the digital logic and analogue front-end, are sufficiently radiation-tolerant to withstand the expected radiation dose. Finally, this book describes monolithic pixel detectors as a possible technology for future pixel detectors. This book is ideal for individuals interested in exploring particle physics, the Higgs boson, and the development of silicon pixel detectors.




From Atoms to Higgs Bosons


Book Description

The announcement in 2012 that the Higgs boson had been discovered was understood as a watershed moment for the Standard Model of particle physics. It was deemed a triumphant event in the reductionist quest that had begun centuries ago with the ancient Greek natural philosophers. Physicists basked in the satisfaction of explaining to the world that the ultimate cause of mass in our universe had been unveiled at CERN, Switzerland. The Standard Model of particle physics is now understood by many to have arrived at a satisfactory description of entities and interactions on the smallest physical scales: elementary quarks, leptons, and intermediary gauge bosons residing within a four-dimensional spacetime continuum. Throughout the historical journey of reductionist physics, mathematics has played an increasingly dominant role. Indeed, abstract mathematics has now become indispensable in guiding our discovery of the physical world. Elementary particles are endowed with abstract existence in accordance with their appearance in complicated equations. Heisenberg’s uncertainty principle, originally intended to estimate practical measurement uncertainties, now bequeaths a numerical fuzziness to the structure of reality. Particle physicists have borrowed effective mathematical tools originally invented and employed by condensed matter physicists to approximate the complex structures and dynamics of solids and liquids and bestowed on them the authority to define basic physical reality. The discovery of the Higgs boson was a result of these kinds of strategies, used by particle physicists to take the latest steps on the reductionist quest. This book offers a constructive critique of the modern orthodoxy into which all aspiring young physicists are now trained, that the ever-evolving mathematical models of modern physics are leading us toward a truer understanding of the real physical world. The authors propose that among modern physicists, physical realism has been largely replaced—in actual practice—by quasirealism, a problematic philosophical approach that interprets the statements of abstract, effective mathematical models as providing direct information about reality. History may judge that physics in the twentieth century, despite its seeming successes, involved a profound deviation from the historical reductionist voyage to fathom the mysteries of the physical universe.




Looking Inside Jets


Book Description

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.