Semiconductor Nanocrystals


Book Description

A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.




Semiconductor and Metal Nanocrystals


Book Description

The vast technological potential of nanocrystalline materials, as well as current intense interest in the physics and chemistry of nanoscale phenomena, has led to explosive growth in research on semiconductor nanocrystals, also known as nanocrystal quantum dots, and metal nanoparticles. Semiconductor and Metal Nanocrystals addresses current topics impacting the field including synthesis and assembly of nanocrystals, theory and spectroscopy of interband and intraband optical transitions, single-nanocrystal optical and tunneling spectroscopies, electrical transport in nanocrystal assemblies, and physical and engineering aspects of nanocrystal-based devices. Written by experts who have contributed pioneering research, this reference comprises key advances in the field of semiconductor nanocrystal quantum dots and metal nanoparticles over the past several years. Focusing specifically on nanocrystals generated through chemical techniques, Semiconductor and Metal Nanocrystals Merges investigative frontiers in physics, chemistry, and engineering Documents advances in nanocrystal synthesis and assembly Explores the theory of electronic excitations in nanoscale particles Presents comprehensive information on optical spectroscopy of interband and intraband optical transitions Reviews data on single-nanocrystal optical and tunneling spectroscopies Weighs controversies related to carrier relaxation dynamics in ultrasmall nanoparticles Discusses charge carrier transport in nanocrystal assemblies Provides examples of lasing and photovoltaic nanocrystal-based devices Semiconductor and Metal Nanocrystals is a must read for scientists, engineers, and upper-level undergraduate and graduate students interested in the physics and chemistry of nanoscale semiconductor and metal particles, as well as general nanoscale science. About the Editor: VICTOR I. KLIMOV is Team Leader, Softmatter Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory, New Mexico. The recipient of the Los Alamos Fellows Prize (2000), he is a Fellow of the Alexander von Humboldt Foundation, leader of the Nanophotonics and Nanoelectronics Thrust of the Center for Integrated Nanotechnologies (U.S. Department of Energy), a member of the Los Alamos Board of Governors of the Institute for Complex Adaptive Matter, and a member of the Steering Committee for the Los Alamos Quantum Institute. He received the M.S. (1978), Ph.D. (1981), and Dr. Sci. (1993) degrees from Moscow State University, Russia.







Semiconductor Nanocrystals and Silicate Nanoparticles


Book Description

This historic book may have numerous typos and missing text. Purchasers can usually download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Niet afgebeeld. 1896 edition. Uittreksel: ...van kai met een verbaal woord, bij de verleden deelwoorden met raa, den passieven vorm met ndai en het participium passivum praesens. behandeld in 62, de eenigste vormen, waarin zich in het Bim. eene bepaalde passieve constructie ontwikkeld heeft. Dit is zeer begrijpelijk, bij de actieve constructie toch is het alleen maar eene zaak van vorm of men zegt: ta-bonto-ku kai malanta of ta-bonto-kai-ku malanta (vgl. de vorige ), bij de passieve constructie daarentegen gaat daaraan tevens verschil in beteekenis gepaard. Beteekenen toch, bijv. de van het eenvoudige diki (binden) afgeleide vormen raa-diki en ndai diki, dat, wat gebonden is en dat, wat te binden is (dat, wat gebonden wordt), zoo hebben de van het uit diki en kai samengestelde werkwoord diki afgeleide vormen raa-diki kai en ndai diki kai eene beteekeuis, die wij moeten omschrijven mei, dat, waarmede is gebonden," en dat, waarmede te binden is (gebonden wordt)." Heeft het werkwoord oorspronkelijk intransitieve beteekeuis, dan wordt het door samenstelling met kai transitief, zoodat er dus ook bovengenoemde passieve vormen van afgeleid kunnen worden, bijv. van mat (komen) raa-mai kai en ndai mai kai, de beteekenis van welke vormen wij moeten omschrijven met dat, waarmede (men) gekomen is" en dat, waarmede men komen moet (dat, waarmede men komt)." Wat de beteekenis dezer vormen betreft, is nog op te merken, dat zij behalve het instrument, ook nog de oorzaak kunnen aanduiden, in welk geval wij ze op bovengenoemde wijze kunnen omschrijven door in plaats van waarmede," waardoor" of waarom" te bezigen. De samenhang dezer beteekenissen is bekend genoeg (zie ook Aanm. U. na 140), alleen zij nog...




Microsystems and Nanotechnology


Book Description

“Microsystems and Nanotechnology” presents the latest science and engineering research and achievements in the fields of microsystems and nanotechnology, bringing together contributions by authoritative experts from the United States, Germany, Great Britain, Japan and China to discuss the latest advances in microelectromechanical systems (MEMS) technology and micro/nanotechnology. The book is divided into five parts – the fundamentals of microsystems and nanotechnology, microsystems technology, nanotechnology, application issues, and the developments and prospects – and is a valuable reference for students, teachers and engineers working with the involved technologies. Professor Zhaoying Zhou is a professor at the Department of Precision Instruments & Mechanology , Tsinghua University , and the Chairman of the MEMS & NEMS Society of China. Dr. Zhonglin Wang is the Director of the Center for Nanostructure Characterization, Georgia Tech, USA. Dr. Liwei Lin is a Professor at the Department of Mechanical Engineering, University of California at Berkeley, USA.




Nanocrystal Quantum Dots


Book Description

A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.




Trends in Chemistry of Materials


Book Description

In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.




Advances In Chemistry: A Selection Of C N R Rao's Publications (1994-2003)


Book Description

This invaluable book comprises assorted recent papers of Professor C N R Rao, a well-known chemist. It presents current trends in materials chemistry and physics, offering in-depth information to young researchers and pleasant reading to experts. Advances in Chemistry brings out the single-minded dedication of Professor Rao to the promotion of science.




Nanostructures And Nanomaterials: Synthesis, Properties, And Applications (2nd Edition)


Book Description

This is the 2nd edition of the original “Nanostructures and Nanomaterials” written by Guozhong Cao and published by Imperial College Press in 2004.This important book focuses not only on the synthesis and fabrication of nanostructures and nanomaterials, but also includes properties and applications of nanostructures and nanomaterials, particularly inorganic nanomaterials. It provides balanced and comprehensive coverage of the fundamentals and processing techniques with regard to synthesis, characterization, properties, and applications of nanostructures and nanomaterials. Both chemical processing and lithographic techniques are presented in a systematic and coherent manner for the synthesis and fabrication of 0-D, 1-D, and 2-D nanostructures, as well as special nanomaterials such as carbon nanotubes and ordered mesoporous oxides. The book will serve as a general introduction to nanomaterials and nanotechnology for teaching and self-study purposes.