Symmetry in Particle Physics


Book Description

Particle physics is a science about the symmetries of our world. The Standard Model is the fundamental theory of microworld. Particle dynamics in the Standard Model obeys strict symmetry laws with explicit experimental consequences. Priority problems of particle physics based on the Standard Model are more accurate theoretical predictions, experimental measurements and data analysis, proof of existence or non-existence of supersymmetry, top quark properties, Higgs boson, exotic quark states, and physics of neutrinos. In this collection of articles, many of these problems are discussed. We recommend this book for students, graduate students, and scientists working in the field of high energy physics.




Advances in Jet Substructure at the LHC


Book Description

This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.




Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass


Book Description

This thesis presents the first experimental calibration of the top-quark Monte-Carlo mass. It also provides the top-quark mass-independent and most precise top-quark pair production cross-section measurement to date. The most precise measurements of the top-quark mass obtain the top-quark mass parameter (Monte-Carlo mass) used in simulations, which are partially based on heuristic models. Its interpretation in terms of mass parameters used in theoretical calculations, e.g. a running or a pole mass, has been a long-standing open problem with far-reaching implications beyond particle physics, even affecting conclusions on the stability of the vacuum state of our universe. In this thesis, this problem is solved experimentally in three steps using data obtained with the compact muon solenoid (CMS) detector. The most precise top-quark pair production cross-section measurements to date are performed. The Monte-Carlo mass is determined and a new method for extracting the top-quark mass from theoretical calculations is presented. Lastly, the top-quark production cross-sections are obtained – for the first time – without residual dependence on the top-quark mass, are interpreted using theoretical calculations to determine the top-quark running- and pole mass with unprecedented precision, and are fully consistently compared with the simultaneously obtained top-quark Monte-Carlo mass.




Search for Flavor-Changing Neutral Current Top Quark Decays t → Hq, with H → bb̅ , in pp Collisions at √s = 8 TeV with the ATLAS Detector


Book Description

This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches – in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.




The Black Book of Quantum Chromodynamics


Book Description

This title provides an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The text provides the reader with an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier.




Physics at the Large Hadron Collider


Book Description

In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.




Top Quark Physics at Hadron Colliders


Book Description

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.










Particle Physics At The Year Of Light - Proceedings Of The Seventeenth Lomonosov Conference On Elementary Particle Physics


Book Description

The volume of these proceedings is devoted to a wide variety of items, both in theory and experiment, of particle physics such as electroweak theory, fundamental symmetries, tests of the standard model and beyond, neutrino and astroparticle physics, hadron physics, gravitation and cosmology, physics at the present and future accelerator.