Sensitivity of the Theoretical Electron Capture Shape and Comparisons to Experiment


Book Description

The direct neutrino mass is a fundamental physics quantity with far-reaching implications for the physics community. Current experimental limits put the direct neutrino mass at less than 2 eV. The neutrino mass can be explored through an end-point measurement of tritium beta decay, which is currently underway in the KArlsruhe TRItium Neutrino experiment (KATRIN). KATRIN has a lower limit of 0.2 eV, at which point there will be either a mass measurement or another upper bound. In either case, an alternative experiment with different systematics is needed to verify the results and/or push the upper bound lower. The end point of a calorimetric electron capture spectrum is sensitive to the neutrino mass, and low temperature microcalorimeters have reached the technological maturity necessary to make such a measurement. An open question is whether the theoretical spectral shape used to interpret such a measurement is well enough understood for a sensitive mass determination. This dissertation seeks to explore the feasibility of a neutrino mass measurement using low temperature microcalorimeters by determining the sensitivity of theoretical calculations and comparing predictions of experimental observables from these calculations to experimental spectra of 163Ho, 193Pt, and 55Fe to avoid material-specific biases. In this dissertation, the theoretical shape of a calorimetric electron capture spectrum is re-categorized as a set of decisions. The effects of decisions in these categories are quantitatively explored, with a focus on experimental observables and predictions of spectral reach needed to differentiate between different calculations. While calorimetric data from 163Ho and 55Fe exists in the literature, new 193Pt data was taken for the purposes of comparison to calculations. The unique 193Pt-in-Pt absorber matrix is characterized with gamma spectroscopy and modeling for the irradiation creation process. Acquisition and analysis of the calorimetric electron capture data from this absorber is discussed. Calculations are compared to 163Ho, 193Pt, and 55Fe spectra.







Measurements of Neutrino Mass


Book Description

Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the 3He-T mass difference; electron capture decay of 163Ho and 158Tb; and limits on massive neutrinos from cosmology. 38 references. (WHK).




Background Studies for the ECHo Experiment


Book Description

The aim of the Electron Capture Ho-163 (ECHo) experiment is the determination of the effective electron neutrino mass. This should be achieved by analyzing the Ho-163 electron capture (EC) spectrum recorded by Ho-implanted metallic magnetic calorimeters (MMCs) arranged in a pixelized array. The influence of the neutrino mass on the shape of the Ho-163 EC spectrum is strongest at the endpoint region around Q_EC ~ 2.8 keV. However, the fraction of events in the region of interest (ROI) of 10 eV below Q_EC is only in the order of 10^-9 resulting in low count rates of the order of 10^-4 counts per day and pixel for an activity of 1 Bq of Ho-163 per MMC pixel. Thus, the description of the endpoint region has to rely on the precise knowledge of the expected Ho-163 events and background events. The background in the ROI is aimed to be dominated by unresolved pile-up, which is expected to be in the order of 10^-6 to 10^-5 counts per day and pixel. In this work, the expected background caused by cosmic muons and natural occurring radionuclides located in the next surrounding of the detector arrays is discussed. For this purpose, Monte Carlo simulations based on the GEANT4 framework are performed to study the energy deposition in the MMCs due to muons and radiation produced by muons propagating through materials surrounding the detector array. Results of screening measurements of materials used in the first stage of the ECHo experiment, ECHo-1k, are used as basis for simulations of radioisotopes in materials close to the detector array. The results of the simulations of radioactive contamination is compared with a background spectra acquired by non-Ho-implanted pixels, while the simulation of muonic background is compared to data acquired by a measurement including an active muon veto installed around the cryostat used for the operation of the detectors. A pulse shape analysis of pulses received by the MMCs is used to identify Ho-163 induced and similar events caused by particles stopped in the MMCs, and is used to identify events generated by muons.




Physics of Neutrinos


Book Description

This useful text provides a survey of the current state of research into the physics of neutrinos. It gives a global view of the areas of physics in which neutrinos play important roles, including astrophysics and cosmology.