Workshop on Frontiers in High Energy Physics 2019


Book Description

This book presents the proceedings of The International Workshop on Frontiers in High Energy Physics (FHEP 2019), held in Hyderabad, India. It highlights recent, exciting experimental findings from LHC, KEK, LIGO and several other facilities, and discusses new ideas for the unified treatment of cosmology and particle physics and in the light of new observations, which could pave the way for a better understanding of the universe we live in. As such, the book provides a platform to foster collaboration in order to provide insights into this important field of physics.




Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop


Book Description

"Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the "Workshop on Beam Acceleration in Crystals and Nanostructures" (Fermilab, June 24-25, 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments"--Publisher's website.




Elementary Particles - Accelerators and Colliders


Book Description

After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.










International Europhysics Conference on High Energy Physics


Book Description

The 1997 International Europhysics Conference on High Energy Physics was held at the campus of the Hebrew University of Jerusalem and at the Jerusalem Renaissance Hotel, from August 19th to August 25th, 1997. This was the first time that the European Physical Society had its High Energy Physics Conference outside the boundary of Europe. A total of 550 physicists participated in the conference with a total of 250 presentations in the parallel sessions and 26 presentations in the plenary sessions. The Board of the of the High Energy and Particle Physics division (HEPP) of the EPS acted as the Scientific Organizing Committee. The Board acknowl edges the help of the International Advisory Committee as well as that of the Local Organizing Committee. The conference was co-organized by the Hebrew University of Jerusalem and by the Weizmann Institute of Science, with important help by physi cists from the Israeli Institute of Technology (Technion) and the Tel Aviv University.




Dark Matter in Astro- and Particle Physics


Book Description

Dark matter in the Universe has become one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and perspectives of the ongoing search for dark matter, and the future potential of the field into the next millennium, stressing in particular the interplay between astro- and particle physics.




Physics at the Large Hadron Collider


Book Description

In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.




The Large Hadron Collider


Book Description

Lincoln, a senior scientist at Fermi National Accelerator Laboratory and adjunct professor of physics at Notre Dame, gives readers an insider's view of the Hadron Collider from its conception, through its early discoveries and difficulties, to its greatest triumph, the discovery of the Higgs boson.




LHC Physics


Book Description

Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved. It discusses a broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model to studies of quantum chromodynamics, the B-physics sector, and the properties of dense hadronic matter in heavy-ion collisions. Covering the topics in a pedagogical manner, the book introduces the theoretical and phenomenological framework of hadron collisions and presents the current theoretical models of frontier physics. It offers overviews of the main detector components, the initial calibration procedures, and search strategies. The authors also provide explicit examples of physics analyses drawn from the recently shut down Tevatron. In the coming years, or perhaps even sooner, the LHC experiments may reveal the Higgs boson and offer insight beyond the Standard Model. Written by some of the most prominent and active researchers in particle physics, this volume equips new physicists with the theory and tools needed to understand the various LHC experiments and prepares them to make future contributions to the field.