Statistical Tools for Measuring Agreement


Book Description

Agreement assessment techniques are widely used in examining the acceptability of a new or generic process, methodology and/or formulation in areas of lab performance, instrument/assay validation or method comparisons, statistical process control, goodness-of-fit, and individual bioequivalence. Successful applications in these situations require a sound understanding of both the underlying theory and methodological advances in handling real-life problems. This book seeks to effectively blend theory and applications while presenting readers with many practical examples. For instance, in the medical device environment, it is important to know if the newly established lab can reproduce the instrument/assay results from the established but outdating lab. When there is a disagreement, it is important to differentiate the sources of disagreement. In addition to agreement coefficients, accuracy and precision coefficients are introduced and utilized to characterize these sources. This book will appeal to a broad range of statisticians, researchers, practitioners and students, in areas of biomedical devices, psychology, medical research, and others, in which agreement assessment are needed. Many practical illustrative examples will be presented throughout the book in a wide variety of situations for continuous and categorical data.




Measuring Agreement


Book Description

Presents statistical methodologies for analyzing common types of data from method comparison experiments and illustrates their applications through detailed case studies Measuring Agreement: Models, Methods, and Applications features statistical evaluation of agreement between two or more methods of measurement of a variable with a primary focus on continuous data. The authors view the analysis of method comparison data as a two-step procedure where an adequate model for the data is found, and then inferential techniques are applied for appropriate functions of parameters of the model. The presentation is accessible to a wide audience and provides the necessary technical details and references. In addition, the authors present chapter-length explorations of data from paired measurements designs, repeated measurements designs, and multiple methods; data with covariates; and heteroscedastic, longitudinal, and categorical data. The book also: • Strikes a balance between theory and applications • Presents parametric as well as nonparametric methodologies • Provides a concise introduction to Cohen’s kappa coefficient and other measures of agreement for binary and categorical data • Discusses sample size determination for trials on measuring agreement • Contains real-world case studies and exercises throughout • Provides a supplemental website containing the related datasets and R code Measuring Agreement: Models, Methods, and Applications is a resource for statisticians and biostatisticians engaged in data analysis, consultancy, and methodological research. It is a reference for clinical chemists, ecologists, and biomedical and other scientists who deal with development and validation of measurement methods. This book can also serve as a graduate-level text for students in statistics and biostatistics.




Handbook of Inter-Rater Reliability, 4th Edition


Book Description

The third edition of this book was very well received by researchers working in many different fields of research. The use of that text also gave these researchers the opportunity to raise questions, and express additional needs for materials on techniques poorly covered in the literature. For example, when designing an inter-rater reliability study, many researchers wanted to know how to determine the optimal number of raters and the optimal number of subjects that should participate in the experiment. Also, very little space in the literature has been devoted to the notion of intra-rater reliability, particularly for quantitative measurements. The fourth edition of this text addresses those needs, in addition to further refining the presentation of the material already covered in the third edition. Features of the Fourth Edition include: New material on sample size calculations for chance-corrected agreement coefficients, as well as for intraclass correlation coefficients. The researcher will be able to determine the optimal number raters, subjects, and trials per subject.The chapter entitled “Benchmarking Inter-Rater Reliability Coefficients” has been entirely rewritten.The introductory chapter has been substantially expanded to explore possible definitions of the notion of inter-rater reliability.All chapters have been revised to a large extent to improve their readability.




Advances in Ranking and Selection, Multiple Comparisons, and Reliability


Book Description

S. Panchapakesan has made significant contributions to ranking and selection and has published in many other areas of statistics, including order statistics, reliability theory, stochastic inequalities, and inference. Written in his honor, the twenty invited articles in this volume reflect recent advances in these areas and form a tribute to Panchapakesan’s influence and impact on these areas. Featuring theory, methods, applications, and extensive bibliographies with special emphasis on recent literature, this comprehensive reference work will serve researchers, practitioners, and graduate students in the statistical and applied mathematics communities.




Evidence-Based Nursing


Book Description

Evidence Based Nursing is written in response to numerous requests by nurse practitioners and other graduate faculty for a nursing literature resource. This reader-friendly, accessible guide features plentiful examples from the nursing literature and the addition of specific nursing issues such as qualitative research, with direct application for clinical practice. The guide enables nurses to: frame their clinical questions in a way that will help them find the evidence to support their opinions; distinguish between strong and weak evidence; clearly understand study results; weigh the risks and benefits of management options; and apply the evidence to their individual patients to improve outcomes. Part One provides a basic approach to the problems faced by nurses when determining optimal care, predicting patient progress, and protecting patients from potentially harmful side effects, in addition to including a literature assessment summary and management recommendations. Part Two expands on Part One, providing concrete examples through case studies. This is the only book of its kind that helps nurses use the nursing literature effectively to solve patient problems. Three-step approach to dissecting a problem - to help find the best evidence and improve patient care, most questions can be divided into three parts: (1) Are the results valid? (2) What are the results? and (3) How can I apply the results to patient care? Part One - The Basics: Using the Nursing Literature provides a basic approach to the problems faced by nurses when determining optimal care, predicting patient progress, and protecting patients from potentially harmful side effects and includes a literature assessment summary and management recommendations. Part Two - Beyond the Basics: Using and Teaching the Principles of Evidence-Based Nursing expands on Part One, providing concrete examples through the presentation of cases. Two-part organization helps both beginners and those more accomplished at using the nursing literature. Clinical Scenario provides a brief but detailed description of a clinical situation that requires the application of research through a critical thinking process. Using the Guide examines a clinical scenario, and then evaluates the way in which research findings are collected, analyzed, and applied to the resolution of the problem presented in the scenario. Free CD-ROM contains everything found in the book, allowing for electronic outlining, content filtering, full-text searching, and alternative content organizations.







Site Reliability Engineering


Book Description

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use




The Measurement of Association


Book Description

This research monograph utilizes exact and Monte Carlo permutation statistical methods to generate probability values and measures of effect size for a variety of measures of association. Association is broadly defined to include measures of correlation for two interval-level variables, measures of association for two nominal-level variables or two ordinal-level variables, and measures of agreement for two nominal-level or two ordinal-level variables. Additionally, measures of association for mixtures of the three levels of measurement are considered: nominal-ordinal, nominal-interval, and ordinal-interval measures. Numerous comparisons of permutation and classical statistical methods are presented. Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This book takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field. This topic is relatively new in that it took modern computing power to make permutation methods available to those working in mainstream research. Written for a statistically informed audience, it is particularly useful for teachers of statistics, practicing statisticians, applied statisticians, and quantitative graduate students in fields such as psychology, medical research, epidemiology, public health, and biology. It can also serve as a textbook in graduate courses in subjects like statistics, psychology, and biology.




Methods and Applications of Statistics in the Life and Health Sciences


Book Description

Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume outlines the statistical tools for successfully working with modern life and health sciences research Data collection holds an essential part in dictating the future of health sciences and public health, as the compilation of statistics allows researchers and medical practitioners to monitor trends in health status, identify health problems, and evaluate the impact of health policies and programs. Methods and Applications of Statistics in the Life and Health Sciences serves as a single, one-of-a-kind resource on the wide range of statistical methods, techniques, and applications that are applied in modern life and health sciences in research. Specially designed to present encyclopedic content in an accessible and self-contained format, this book outlines thorough coverage of the underlying theory and standard applications to research in related disciplines such as biology, epidemiology, clinical trials, and public health. Uniquely combining established literature with cutting-edge research, this book contains classical works and more than twenty-five new articles and completely revised contributions from the acclaimed Encyclopedia of Statistical Sciences, Second Edition. The result is a compilation of more than eighty articles that explores classic methodology and new topics, including: Sequential methods in biomedical research Statistical measures of human quality of life Change-point methods in genetics Sample size determination for clinical trials Mixed-effects regression models for predicting pre-clinical disease Probabilistic and statistical models for conception Statistical methods are explored and applied to population growth, disease detection and treatment, genetic and genomic research, drug development, clinical trials, screening and prevention, and the assessment of rehabilitation, recovery, and quality of life. These topics are explored in contributions written by more than 100 leading academics, researchers, and practitioners who utilize various statistical practices, such as election bias, survival analysis, missing data techniques, and cluster analysis for handling the wide array of modern issues in the life and health sciences. With its combination of traditional methodology and newly developed research, Methods and Applications of Statistics in the Life and Health Sciences has everything students, academics, and researchers in the life and health sciences need to build and apply their knowledge of statistical methods and applications.




Statistical Methods for Annotation Analysis


Book Description

Labelling data is one of the most fundamental activities in science, and has underpinned practice, particularly in medicine, for decades, as well as research in corpus linguistics since at least the development of the Brown corpus. With the shift towards Machine Learning in Artificial Intelligence (AI), the creation of datasets to be used for training and evaluating AI systems, also known in AI as corpora, has become a central activity in the field as well. Early AI datasets were created on an ad-hoc basis to tackle specific problems. As larger and more reusable datasets were created, requiring greater investment, the need for a more systematic approach to dataset creation arose to ensure increased quality. A range of statistical methods were adopted, often but not exclusively from the medical sciences, to ensure that the labels used were not subjective, or to choose among different labels provided by the coders. A wide variety of such methods is now in regular use. This book is meant to provide a survey of the most widely used among these statistical methods supporting annotation practice. As far as the authors know, this is the first book attempting to cover the two families of methods in wider use. The first family of methods is concerned with the development of labelling schemes and, in particular, ensuring that such schemes are such that sufficient agreement can be observed among the coders. The second family includes methods developed to analyze the output of coders once the scheme has been agreed upon, particularly although not exclusively to identify the most likely label for an item among those provided by the coders. The focus of this book is primarily on Natural Language Processing, the area of AI devoted to the development of models of language interpretation and production, but many if not most of the methods discussed here are also applicable to other areas of AI, or indeed, to other areas of Data Science.